Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300544, 2024.
Article in English | MEDLINE | ID: mdl-38656972

ABSTRACT

Obesity is a major global health epidemic that has adverse effects on both the people affected as well as the cost to society. Several anti-obesity drugs that target GLP-1 receptors have recently come to the market. Here, we describe the effects of tesofensine, a novel anti-obesity drug that acts as a triple monoamine neurotransmitter reuptake inhibitor. Using various techniques, we investigated its effects on weight loss and underlying neuronal mechanisms in mice and rats. These include behavioral tasks, DeepLabCut videotaped analysis, electrophysiological ensemble recordings, optogenetic activation, and chemogenetic silencing of GABAergic neurons in the Lateral Hypothalamus (LH). We found that tesofensine induces a greater weight loss in obese rats than lean rats, while differentially modulating the neuronal ensembles and population activity in LH. In Vgat-ChR2 and Vgat-IRES-cre transgenic mice, we found for the first time that tesofensine inhibited a subset of LH GABAergic neurons, reducing their ability to promote feeding behavior, and chemogenetically silencing them enhanced tesofensine's food-suppressing effects. Unlike phentermine, a dopaminergic appetite suppressant, tesofensine causes few, if any, head-weaving stereotypy at therapeutic doses. Most importantly, we found that tesofensine prolonged the weight loss induced by 5-HTP, a serotonin precursor, and blocked the body weight rebound that often occurs after weight loss. Behavioral studies on rats with the tastant sucrose indicated that tesofensine's appetite suppressant effects are independent of taste aversion and do not directly affect the perception of sweetness or palatability of sucrose. In summary, our data provide new insights into the effects of tesofensine on weight loss and the underlying neuronal mechanisms, suggesting that tesofensine may be an effective treatment for obesity and that it may be a valuable adjunct to other appetite suppressants to prevent body weight rebound.


Subject(s)
Anti-Obesity Agents , Bridged Bicyclo Compounds, Heterocyclic , GABAergic Neurons , Obesity , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Rats , Mice , Anti-Obesity Agents/pharmacology , Male , Obesity/drug therapy , Obesity/metabolism , Feeding Behavior/drug effects , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Transgenic , Weight Loss/drug effects , Rats, Sprague-Dawley
2.
Cell Rep ; 42(11): 113365, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37924513

ABSTRACT

The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.


Subject(s)
Dopaminergic Neurons , Ventral Tegmental Area , Dopaminergic Neurons/physiology , Ventral Tegmental Area/physiology , Insular Cortex , Amphetamine/pharmacology , Reward
3.
eNeuro ; 9(3)2022.
Article in English | MEDLINE | ID: mdl-35715209

ABSTRACT

How do animals experience brain manipulations? Optogenetics has allowed us to manipulate selectively and interrogate neural circuits underlying brain function in health and disease. However, little is known about whether mice can detect and learn from arbitrary optogenetic perturbations from a wide range of brain regions to guide behavior. To address this issue, mice were trained to report optogenetic brain perturbations to obtain rewards and avoid punishments. Here, we found that mice can perceive optogenetic manipulations regardless of the perturbed brain area, rewarding effects, or the stimulation of glutamatergic, GABAergic, and dopaminergic cell types. We named this phenomenon optoception, a perceptible signal internally generated from perturbing the brain, as occurs with interoception. Using optoception, mice can learn to execute two different sets of instructions based on the laser frequency. Importantly, optoception can occur either activating or silencing a single cell type. Moreover, stimulation of two brain regions in a single mouse uncovered that the optoception induced by one brain region does not necessarily transfer to a second not previously stimulated area, suggesting a different sensation is experienced from each site. After learning, they can indistinctly use randomly interleaved perturbations from both brain regions to guide behavior. Collectively taken, our findings revealed that mice's brains could "monitor" perturbations of their self-activity, albeit indirectly, perhaps via interoception or as a discriminative stimulus, opening a new way to introduce information to the brain and control brain-computer interfaces.


Subject(s)
Brain , Optogenetics , Animals , Brain/physiology , Head , Mice , Perception , Reward
4.
Front Cell Neurosci ; 16: 823220, 2022.
Article in English | MEDLINE | ID: mdl-35360496

ABSTRACT

Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice improves the salience to consolidate a subthreshold novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to consolidate a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience enabling the consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.

5.
Commun Biol ; 3(1): 139, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198461

ABSTRACT

Findings have shown that anterior insular cortex (aIC) lesions disrupt the maintenance of drug addiction, while imaging studies suggest that connections between amygdala and aIC participate in drug-seeking. However, the role of the BLA â†’ aIC pathway in rewarding contextual memory has not been assessed. Using a cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model to induce a real-time conditioned place preference (rtCPP), we show that photoactivation of TH+ neurons induced electrophysiological responses in VTA neurons, dopamine release and neuronal modulation in the aIC. Conversely, memory retrieval induced a strong release of glutamate, dopamine, and norepinephrine in the aIC. Only intra-aIC blockade of the glutamatergic N-methyl-D-aspartate receptor accelerated rtCPP extinction. Finally, photoinhibition of glutamatergic BLA → aIC pathway produced disinhibition of local circuits in the aIC, accelerating rtCPP extinction and impairing reinstatement. Thus, activity of the glutamatergic projection from the BLA to the aIC is critical for maintenance of rewarding contextual memory.


Subject(s)
Basolateral Nuclear Complex/metabolism , Behavior, Animal , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Memory , Neural Pathways/metabolism , Reward , Adrenergic Neurons/metabolism , Animals , Basolateral Nuclear Complex/cytology , Cerebral Cortex/cytology , Conditioning, Psychological , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Extinction, Psychological , Female , Integrases/genetics , Integrases/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition , Neural Pathways/cytology , Norepinephrine/metabolism , Tyrosine 3-Monooxygenase/genetics
6.
Front Neurosci ; 14: 608047, 2020.
Article in English | MEDLINE | ID: mdl-33551725

ABSTRACT

Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.

7.
J Neurosci ; 36(50): 12511-12529, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974611

ABSTRACT

Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT: We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.


Subject(s)
Feeding Behavior/physiology , Glutamates/physiology , Hypothalamic Area, Lateral/physiology , Nerve Fibers/physiology , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Prefrontal Cortex/physiology , Reward , Animals , Channelrhodopsins , Female , Male , Mice , Neurons, Afferent/physiology , Optogenetics , Patch-Clamp Techniques , Self Stimulation , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...