Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 80(19-21): 1145-1155, 2017.
Article in English | MEDLINE | ID: mdl-28850017

ABSTRACT

Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.


Subject(s)
Blood/drug effects , Cerebellum/drug effects , Environmental Pollutants/toxicity , Liver/drug effects , Methylmercury Compounds/toxicity , Motor Activity/drug effects , Animals , Blood Chemical Analysis , Cerebellum/metabolism , Liver/metabolism , Male , Mice
2.
Mol Neurobiol ; 51(3): 1368-78, 2015.
Article in English | MEDLINE | ID: mdl-25064055

ABSTRACT

Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.


Subject(s)
Adenosine/analogs & derivatives , Analgesics/pharmacology , Inosine/pharmacology , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/metabolism , Adenosine Deaminase/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pain Measurement/methods
3.
Purinergic Signal ; 9(1): 51-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22806273

ABSTRACT

Inosine is the first metabolite of adenosine. It exerts an antinociceptive effect by activating the adenosine A(1) and A(2A) receptors. We have previously demonstrated that inosine exhibits antinociceptive properties in acute and chronic mice models of nociception. The aim of this study was to investigate the involvement of pertussis toxin-sensitive G-protein-coupled receptors, as well as K(+) and Ca(2+) channels, in the antinociception promoted by inosine in the formalin test. Mice were pretreated with pertussis toxin (2.5 µg/site, i.t., an inactivator of G(i/0) protein); after 7 days, they received inosine (10 mg/kg, i.p.) or morphine (2.5 mg/kg, s.c., used as positive control) immediately before the formalin test. Another group of animals received tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (1 µg/site, i.t., a non-specific voltage-gated K(+) channel blockers), apamin (50 ng/site, i.t., a small conductance Ca(2+)-activated K(+) channel blocker), charybdotoxin (250 pg/site, i.t., a large-conductance Ca(2+)-activated K(+) channel blocker), glibenclamide (100 µg/site, i.t., an ATP-sensitive K(+) channel blocker) or CaCl(2) (200 nmol/site, i.t.). Afterwards, the mice received inosine (10 mg/kg, i.p.), diclofenac (10 mg/kg, i.p., a positive control), or morphine (2.5 mg/kg, s.c., a positive control) immediately before the formalin test. The antinociceptive effect of inosine was reversed by the pre-administration of pertussis toxin (2.5 µg/site, i.t.), TEA, 4-aminopyridine, charybdotoxin, glibenclamide, and CaCl(2), but not apamin. Further, all K(+) channel blockers and CaCl(2) reversed the antinociception induced by diclofenac and morphine, respectively. Taken together, these data suggest that the antinociceptive effect of inosine is mediated, in part, by pertussis toxin-sensitive G-protein coupled receptors and the subsequent activation of voltage gated K(+) channel, large conductance Ca(2+)-activated and ATP-sensitive K(+) channels or inactivation of voltage-gated Ca(2+) channels. Finally, small conductance Ca(2+)-activated K(+) channels are not involved in the antinociceptive effect of inosine.


Subject(s)
Analgesics , Calcium Channels/physiology , GTP-Binding Proteins/drug effects , GTP-Binding Proteins/physiology , Inosine/pharmacology , Pertussis Toxin/pharmacology , Potassium Channels/physiology , Analgesics, Opioid/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diclofenac/pharmacology , Injections, Spinal , Male , Mice , Morphine/pharmacology , Pain Measurement
SELECTION OF CITATIONS
SEARCH DETAIL
...