Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766015

ABSTRACT

The increasing prevalence of cannabis use during pregnancy has raised significant medical concerns, primarily related to the presence of Δ9-tetrahydrocannabinol (THC), which readily crosses the placenta and impacts fetal brain development. Previous research has identified midbrain dopaminergic neuronal alterations related to maternal THC consumption. However, the enduring consequences that prenatal cannabis exposure (PCE) has on striatum-based processing during voluntary reward pursuit have not been specifically determined. Here, we characterize PCE rats during food (palatable pellets) or opioid (remifentanyl)-maintained reward seeking. We find that the supra motivational phenotype of PCE rats is independent of value-based processing and is instead related to augmented reinforcing efficiency of opioid rewards. Our findings reveal that in utero THC exposure leads to increased cue-evoked dopamine release responses and an overrepresentation of cue-aligned, effort-driven striatal patterns of encoding. Recapitulating findings in humans, drug-related neurobiological adaptations of PCE were more pronounced in males, who similarly showed increased vulnerability for relapse. Collectively, these findings indicate that prenatal THC exposure in male rats engenders a pronounced neurodevelopmental susceptibility to addiction-like disorders later in life.

2.
Nat Commun ; 14(1): 7545, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985770

ABSTRACT

Brain levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) shape motivated behavior and nucleus accumbens (NAc) dopamine release. However, it is not clear whether mobilization of 2-AG specifically from midbrain dopamine neurons is necessary for dopaminergic responses to external stimuli predicting forthcoming reward. Here, we use a viral-genetic strategy to prevent the expression of the 2-AG-synthesizing enzyme diacylglycerol lipase α (DGLα) from ventral tegmental area (VTA) dopamine cells in adult mice. We find that DGLα deletion from VTA dopamine neurons prevents depolarization-induced suppression of excitation (DSE), a form of 2-AG-mediated synaptic plasticity, in dopamine neurons. DGLα deletion also decreases effortful, cue-driven reward-seeking but has no effect on non-cued or low-effort operant tasks and other behaviors. Moreover, dopamine recording in the NAc reveals that deletion of DGLα impairs the transfer of accumbal dopamine signaling from a reward to its earliest predictors. These results demonstrate that 2-AG mobilization from VTA dopamine neurons is a necessary step for the generation of dopamine-based predictive associations that are required to direct and energize reward-oriented behavior.


Subject(s)
Dopamine , Dopaminergic Neurons , Mice , Animals , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Endocannabinoids/metabolism , Ventral Tegmental Area/physiology , Reward
3.
J Neurosci ; 43(45): 7547-7553, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940590

ABSTRACT

Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.


Subject(s)
Behavior, Addictive , Substance-Related Disorders , Humans , Machine Learning , Risk-Taking
4.
Cell Rep ; 42(6): 112553, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37224011

ABSTRACT

Understanding mesolimbic dopamine adaptations underlying vulnerability to drug relapse is essential to inform prognostic tools for effective treatment strategies. However, technical limitations have hindered the direct measurement of sub-second dopamine release in vivo for prolonged periods of time, making it difficult to gauge the weight that these dopamine abnormalities have in determining future relapse incidence. Here, we use the fluorescent sensor GrabDA to record, with millisecond resolution, every single cocaine-evoked dopamine transient in the nucleus accumbens (NAc) of freely moving mice during self-administration. We reveal low-dimensional features of patterned dopamine release that are strong predictors of cue-induced reinstatement of cocaine seeking. Additionally, we report sex-specific differences in cocaine-related dopamine responses related to a greater resistance to extinction in males compared with females. These findings provide important insights into the sufficiency of NAc dopamine signaling dynamics-in interaction with sex-for recapitulating persistent cocaine seeking and future relapse vulnerability.


Subject(s)
Cocaine-Related Disorders , Cocaine , Rats , Male , Mice , Animals , Cocaine/pharmacology , Dopamine/pharmacology , Rats, Sprague-Dawley , Conditioning, Operant , Extinction, Psychological/physiology , Recurrence , Nucleus Accumbens/physiology , Cues
5.
Biomed Pharmacother ; 148: 112708, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35168076

ABSTRACT

Cocaine is a highly consumed drug worldwide which directly targets brain areas involved in reinforcement processing and motivation. Cannabidiol is a phytocannabinoid that exerts protecting effects upon cocaine-induced addictive behavior, although many questions about the mechanisms of action and the specific affected processes remain unknown. Moreover, its effects on cue-induced cocaine-craving incubation have never been addressed. The present study aimed to assess the effects of cannabidiol (20 mg/kg, i.p.) administered during the acquisition of cocaine self-administration (0.75 mg/kg/infusion) and demand task or during cocaine abstinence and craving. Moreover, we measured the alterations in expression of AMPAR subunits and ERK1/2 phosphorylation due to cannabidiol treatment or cocaine withdrawal. Our results showed that cannabidiol reduced cocaine intake when administered during the acquisition phase of the self-administration paradigm, increased behavioral elasticity and reduced motivation for cocaine in a demand task. Cannabidiol also reduced GluA1/2 ratio and increased ERK1/2 phosphorylation in amygdala. No effects over cocaine-craving incubation were found when cannabidiol was administered during abstinence. Furthermore, cocaine withdrawal induced changes in GluA1 and GluA2 protein levels in the prelimbic cortex, ventral striatum and amygdala, as well as a decrease in ERK1/2 phosphorylation in ventral striatum. Taken together, our results show that cannabidiol exerts beneficial effects attenuating the acquisition of cocaine self-administration, in which an operant learning process is required. However, cannabidiol does not affect cocaine abstinence and craving.


Subject(s)
Cannabidiol , Cocaine , Animals , Cannabidiol/pharmacology , Cocaine/metabolism , Cocaine/pharmacology , Craving , Economics, Behavioral , Mice , Motivation , Nucleus Accumbens
6.
Article in English | MEDLINE | ID: mdl-34688811

ABSTRACT

No pharmacological treatments are yet approved for patients with cocaine use disorders. Cannabidiol, a constituent of the C. sativa plant has shown promising results in rodent models of drug addiction. However, the specific effects and mechanisms of action of cannabidiol in rodent operant models of extinction-based abstinence and drug-seeking relapse remain unclear. Cannabidiol (10 and 20 mg/kg, i.p.) was injected during extinction training to male CD-1 mice previously trained to self-administer cocaine (0.75 mg/kg/infusion). Then, we evaluated the reinstatement of cocaine seeking induced by cues and stressful stimuli (footshock). We found that cannabidiol (10 and 20 mg/kg) did not modulate extinction learning. After cannabidiol 20 mg/kg treatment, increased levels of CB1 receptor protein were found in the prelimbic and orbitofrontal regions of the prefrontal cortex, and in the ventral striatum; an effect paralleled by a reduction of striatal ∆FosB accumulation and an increment of GluR2 AMPA receptor subunits. Furthermore, cue-induced reinstatement of cocaine seeking was attenuated by cannabidiol. Unexpectedly, cannabidiol 20 mg/kg facilitated stress-induced restoration of cocaine-seeking behaviour. To ascertain the participation of CB1 receptors in these behavioural changes, we administered the CB1 antagonist AM4113 (5 mg/kg) before each reinstatement session. Both, the attenuation of cue-induced reinstatement and the facilitation of stress-induced reestablishment were abolished by AM4113 in cannabidiol 20 mg/kg-treated mice. Our results reveal a series of complex CB1-related changes induced by cannabidiol with a varying impact on the reinstatement of cocaine-seeking behaviour that could limit its therapeutic applications.


Subject(s)
Cannabidiol/pharmacology , Cocaine/administration & dosage , Cues , Drug-Seeking Behavior , Pyrazoles/antagonists & inhibitors , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Behavior, Addictive/drug therapy , Behavior, Animal/drug effects , Extinction, Psychological/drug effects , Humans , Male , Mice , Prefrontal Cortex/drug effects , Recurrence , Self Administration , Ventral Striatum/drug effects
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361071

ABSTRACT

3,4-Methylenedioxypyrovalerone (MDPV) is a new psychoactive substance (NPS) and the most widespread and life-threatening synthetic cathinone of the "bath salts". Preclinical research has proven the cocaine-like psychostimulant effects of MDPV and its potential for abuse. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid that has emerged as a new potential treatment for drug addiction. Here, we tested the effects of CBD (20 mg/kg) on MDPV (2 mg/kg)-induced conditioned place preference and MDPV (0.05 and 0.075 mg/kg/infusion) self-administration paradigms. In addition, we assessed the effects of the co-administration of CBD and MDPV (3 and 4 mg/kg) on anxiety-like behaviour using the elevated plus maze (EPM). CBD mitigated the MDPV-induced conditioned place preference. On the contrary, CBD administration throughout the MDPV (0.075 mg/kg/infusion) self-administration increased drug-seeking and taking behaviours, but only in the high-responders group of mice. Furthermore, CBD exerted anxiolytic-like effects, exclusively in MDPV-treated mice. Taken together, our results indicate that CBD modulation of MDPV-induced motivational responses in mice varies depending on the requirements of the learning task, resulting in a complex response. Therefore, further research attempting to decipher the behavioural and molecular interactions between CBD and MDPV is needed.


Subject(s)
Anxiety/drug therapy , Behavior, Animal/drug effects , Benzodioxoles/toxicity , Cannabidiol/pharmacology , Drug-Seeking Behavior/drug effects , Pyrrolidines/toxicity , Adrenergic Uptake Inhibitors/toxicity , Animals , Anticonvulsants/pharmacology , Anxiety/chemically induced , Anxiety/pathology , Conditioning, Classical/drug effects , Male , Mice , Synthetic Cathinone
8.
J Neurosci ; 41(32): 6946-6953, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34230105

ABSTRACT

Motivational deficits characterized by an unwillingness to overcome effortful costs are a common feature of neuropsychiatric and neurologic disorders that are insufficiently understood and treated. Dopamine (DA) signaling in the nucleus accumbens (NAc) facilitates goal-seeking, but how NAc DA release encodes motivationally salient stimuli to influence effortful investment is not clear. Using fast-scan cyclic voltammetry in male and female mice, we find that NAc DA release diametrically responds to cues signaling increasing cost of reward, while DA release to the reward itself is unaffected by its cost. Because endocannabinoid (eCB) signaling facilitates goal seeking and NAc DA release, we further investigated whether repeated augmentation of the eCB 2-arachidonoylglycerol with a low dose of a monoacylglycerol lipase (MAGL) inhibitor facilitates motivation and DA signaling without the development of tolerance. We find that chronic MAGL treatment stably facilitates goal seeking and DA encoding of prior reward cost, providing critical insight into the neurobiological mechanisms of a viable treatment for motivational deficits.SIGNIFICANCE STATEMENT Decades of work has established a fundamental role for dopamine neurotransmission in motivated behavior and cue-reward learning, but how dopaminergic encoding of cues associates with motivated action has remained unclear. Specifically, how dopamine neurons signal future and prior reward cost, and whether this can be modified to influence motivational set points is not known. The current study provides important insight into how dopamine neurons encode motivationally relevant stimuli to influence goal-directed action and supports cannabinoid-based therapies for treatment of motivational disorders.


Subject(s)
Dopaminergic Neurons/physiology , Endocannabinoids/metabolism , Motivation/physiology , Nucleus Accumbens/physiology , Reward , Animals , Cues , Dopamine , Dopaminergic Neurons/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/pharmacology , Motivation/drug effects , Nucleus Accumbens/drug effects
9.
Curr Opin Pharmacol ; 56: 29-38, 2021 02.
Article in English | MEDLINE | ID: mdl-33068883

ABSTRACT

Prolonged exposure to drugs of abuse leads to severe alterations in mesocorticolimbic dopamine circuitry deeply implicated in substance use disorders. Despite considerable efforts, few medications to reduce relapse rates are currently available. To solve this issue, researchers are uncovering therapeutic opportunities offered by the endocannabinoid system. The cannabinoid receptor type 1 (CB1R), and its endogenous ligands, participate in orchestration of cue-triggered and stress-triggered responses leading to obtain natural and drug rewards. Here, we review the evidence supporting the use of CB1R neutral antagonists, allosteric modulators, indirect agonists, as well as multi-target compounds, as improved alternatives compared to classical CB1R antagonists. The promising therapeutic value of other substrates participating in endocannabinoid signaling, like peroxisome proliferator-activated receptors, is also covered. Overall, a wide body of pre-clinical evidence avails novel pharmacological strategies interacting with the endocannabinoid system as clinically amenable candidates able to counteract drug-induced dopamine maladaptations contributing to increased risk of relapse.


Subject(s)
Pharmaceutical Preparations , Substance-Related Disorders , Endocannabinoids , Humans , Ligands , Reward , Substance-Related Disorders/drug therapy , Substance-Related Disorders/prevention & control
10.
Front Behav Neurosci ; 14: 109, 2020.
Article in English | MEDLINE | ID: mdl-32676014

ABSTRACT

During the last decades, researchers have investigated the functional relevance of adult hippocampal neurogenesis in normal brain function as well as in the pathogenesis of diverse psychiatric conditions. Although the underlying mechanisms of newborn neuron differentiation and circuit integration have yet to be fully elucidated, considerable evidence suggests that the endocannabinoid system plays a pivotal role throughout the processes of adult neurogenesis. Thus, synthetic, and natural cannabinoid compounds targeting the endocannabinoid system have been utilized to modulate the proliferation and survival of neural progenitor cells and immature neurons. Cannabidiol (CBD), a constituent of the Cannabis Sativa plant, interacts with the endocannabinoid system by inhibiting fatty acid amide hydrolase (FAAH) activity (the rate-limiting enzyme for anandamide hydrolysis), allosterically modulating CB1 and CB2 receptors, and activating components of the "extended endocannabinoid system." Congruently, CBD has shown prominent pro-neurogenic effects, and, unlike Δ9-tetrahydrocannabinol, it has the advantage of being devoid of psychotomimetic effects. Here, we first review pre-clinical studies supporting the facilitating effects of CBD on adult hippocampal neurogenesis and available data disclosing cannabinoid mechanisms by which CBD can induce neural proliferation and differentiation. We then review the respective implications for its neuroprotective, anxiolytic, anti-depressant, and anti-reward actions. In conclusion, accumulating evidence reveals that, in rodents, adult neurogenesis is key to understand the behavioral manifestation of symptomatology related to different mental disorders. Hence, understanding how CBD promotes adult neurogenesis in rodents could shed light upon translational therapeutic strategies aimed to ameliorate psychiatric symptomatology dependent on hippocampal function in humans.

11.
Pharmacol Biochem Behav ; 176: 101-110, 2019 01.
Article in English | MEDLINE | ID: mdl-30571988

ABSTRACT

Drug-associated contexts and discrete cues can trigger motivational states responsible for drug-seeking behavior and relapse. In preclinical research, drug-free conditioned hyperactivity has been used to investigate the expression of memories associated with psychostimulant drug effects. Addictive drugs can produce long-lasting sensitization to their psychomotor actions, a phenomenon known as behavioral sensitization. The neuroplasticity underlying behavioral sensitization appears to be involved in pathological drug pursuit and abuse. In the present study we evaluated drug-free, context-dependent hyperactivity in DBA/2 J mice previously treated with cocaine and we explored whether this conditioned effect was related to behavioral sensitization. Given the role of noradrenergic (NA) neurotransmission in memory retrieval, consolidation and reconsolidation processes, we also investigated whether conditioned hyperactivity in a drug-free state was mediated by NA receptors. Animals underwent a sensitization protocol with six cocaine injections (0, 5, 10 or 20 mg/kg) paired to a particular floor cue. Three days after this sensitization phase, all animals were exposed to the same familiar floor environment without drug treatment. A second test with an unfamiliar floor was conducted 24 h later. Conditioned hyperactivity was also explored after one or three cocaine pairings and was evaluated for its duration (with repeated familiar vs. unfamiliar floor tests). In a series of pharmacological experiments, we evaluated the effects propranolol (a non-selective antagonist of ß1- and ß2-receptors) and prazosin (α1-receptor antagonist) on conditioned hyperactivity. Cocaine treatment produced both robust sensitization and drug-free conditioned hyperactivity, an effect that lasted up to 17 days (with cocaine 20 mg/kg). A significant correlation between the magnitude of cocaine sensitization and the level of conditioned hyperactivity was found. Propranolol, but not prazosin, blocked context-dependent hyperlocomotion in a drug-free state. Our data, together with a vast body of literature, indicate that the NA system plays a key role in the retrieval and behavioral expression of drug-associated memories.


Subject(s)
Behavior, Animal/drug effects , Cocaine/adverse effects , Locomotion/drug effects , Psychomotor Agitation/etiology , Receptors, Adrenergic/physiology , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-Antagonists/administration & dosage , Adrenergic beta-Antagonists/pharmacology , Animals , Association , Cocaine/administration & dosage , Cocaine/pharmacology , Conditioning, Psychological/drug effects , Drug-Seeking Behavior , Injections, Intraperitoneal , Male , Memory/drug effects , Mice , Mice, Inbred DBA , Norepinephrine/metabolism , Prazosin/administration & dosage , Prazosin/pharmacology , Propranolol/administration & dosage , Propranolol/pharmacology
12.
Front Behav Neurosci ; 7: 93, 2013.
Article in English | MEDLINE | ID: mdl-23914161

ABSTRACT

Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of ß-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of ß-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of ß-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.

SELECTION OF CITATIONS
SEARCH DETAIL
...