Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 21(1): 601, 2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34922461

ABSTRACT

BACKGROUND: Phytophthora root rot, caused by Phytophthora capsici, is a major disease affecting Capsicum production worldwide. A recombinant inbred line (RIL) population derived from the hybridization between 'Criollo de Morellos-334' (CM-334), a resistant landrace from Mexico, and 'Early Jalapeno', a susceptible cultivar was genotyped using genotyping-by-sequencing (GBS)-derived single nucleotide polymorphism (SNP) markers. A GBS-SNP based genetic linkage map for the RIL population was constructed. Quantitative trait loci (QTL) mapping dissected the genetic architecture of P. capsici resistance and candidate genes linked to resistance for this important disease were identified. RESULTS: Development of a genetic linkage map using 1,973 GBS-derived polymorphic SNP markers identified 12 linkage groups corresponding to the 12 chromosomes of chile pepper, with a total length of 1,277.7 cM and a marker density of 1.5 SNP/cM. The maximum gaps between consecutive SNP markers ranged between 1.9 (LG7) and 13.5 cM (LG5). Collinearity between genetic and physical positions of markers reached a maximum of 0.92 for LG8. QTL mapping identified genomic regions associated with P. capsici resistance in chromosomes P5, P8, and P9 that explained between 19.7 and 30.4% of phenotypic variation for resistance. Additive interactions between QTL in chromosomes P5 and P8 were observed. The role of chromosome P5 as major genomic region containing P. capsici resistance QTL was established. Through candidate gene analysis, biological functions associated with response to pathogen infections, regulation of cyclin-dependent protein serine/threonine kinase activity, and epigenetic mechanisms such as DNA methylation were identified. CONCLUSIONS: Results support the genetic complexity of the P. capsici-Capsicum pathosystem and the possible role of epigenetics in conferring resistance to Phytophthora root rot. Significant genomic regions and candidate genes associated with disease response and gene regulatory activity were identified which allows for a deeper understanding of the genomic landscape of Phytophthora root rot resistance in chile pepper.


Subject(s)
Capsicum/genetics , Capsicum/microbiology , Disease Resistance/genetics , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosome Mapping , Genetic Markers , Genome, Plant , Genotyping Techniques , Plant Roots/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
2.
Plant Dis ; 105(11): 3353-3367, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33543991

ABSTRACT

Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. vasinfectum (Atk.) W.C. Snyder & H.N. Hans (FOV), is one of the most destructive diseases of cotton (Gossypium spp.) worldwide. FOV race 4 (FOV4) is a highly virulent nominal race of this pathogen and a significant threat to cotton production in the western and southwestern USA and, potentially, the entire Cotton Belt. A field survey to identify FOV4 was performed in three southern counties of New Mexico in 619 cotton fields from 2018 to 2020. From 132 samples of cotton plants that exhibited wilt symptoms, Fusarium spp. were the most frequently isolated group of fungal species, with an isolation frequency of 57.4%. Eighty-four Fusarium spp. isolates were subsequently characterized by a DNA sequence analysis of three genes, EF-1α, PHO, and BT, encoding for translation elongation factor, phosphate permease, and ß-tubulin, respectively. Forty-two isolates from 10 cotton fields were identified as FOV4 and confirmed with a positive 500-bp fragment diagnostic for FOV4. Twenty-six (62%) of the 42 FOV4 isolates were T type and the remainder (38%) were null type with and without a Tfo1 insertion in PHO, respectively. Each FOV4-infested field contained the same FOV4 genotype. Ten representative FOV4 isolates (one each from the 10 FOV4-infested fields) were evaluated for their pathogenicity on resistant Pima PHY 841 RF and susceptible Upland PHY 725 RF at 7, 14, 21, and 28 days after inoculation under temperature-controlled conditions at 21 to 22°C. Based on the disease severity rating, mortality rate, and area under the disease progress curve value, all 10 isolates were pathogenic to both cotton cultivars and differed in virulence; four isolates of the T genotype as a whole were more virulent than the six isolates of the N genotype. PHY 841 RF had significantly higher levels of resistance than PHY 725 RF to all FOV4 isolates. The results provide the first comprehensive account of the occurrence, distribution, and virulence of FOV4 in cotton production in New Mexico and will be useful for developing an effective strategy to manage FW in the state of New Mexico and the entire western and southwestern Cotton Belt.


Subject(s)
Fusarium , Fusarium/genetics , Gossypium , New Mexico , Plant Diseases , Seedlings
3.
PLoS One ; 14(10): e0223213, 2019.
Article in English | MEDLINE | ID: mdl-31589629

ABSTRACT

Phytophthora capsici is a soil borne pathogen, and is among the most destructive pathogens for Capsicum annuum (chile). P. capsici is known to cause diseases on all parts of the chile plants. Therefore, it requires independent resistance genes to control disease symptoms that are induced by each of the P. capsici strains. This requirement of multiple resistance genes to confer resistance to P. capsici, in chile makes breeding for resistance a daunting pursuit. Against this backdrop, a genetic engineering approach would be to introduce a broad host resistance gene into chile in order to protect it from different races of P. capsici. Notably, a broad host resistance gene RB from Solanum bulbocastanum has been shown to confer resistance to P. infestans in both S. tuberosum and S. lycopersicum. We agroinfiltrated the RB gene into the leaves of susceptible chile plants, demonstrating that the gene is also capable of lending resistance to P. capsici in chile. We introduced the RB gene into chile by developing an Agrobacterium tumefaciens mediated transformation system. The integration of the RB gene into the genome of the primary transformants and its subsequent transfer to the F1 generation was confirmed by genomic PCR using primers specific for the RB gene. A 3:1 ratio for the presence and absence of the RB gene was observed in the F1 progeny. In addition to showing resistance to P. capsici in a leaf inoculation experiment, about 30% of the F1 progeny also exhibited resistance to root inoculation. Our data, when taken together, suggests that the RB gene from S. bulbocastanum confers resistance against P. capsici in C. annuum, thereby demonstrating that the RB gene has an even broader host range than reported in the literature-both in terms of the host and the pathogen.


Subject(s)
Capsicum/genetics , Capsicum/microbiology , Disease Resistance/genetics , Genes, Plant , Phytophthora/physiology , Plant Diseases/microbiology , Solanum/genetics , Disease Progression , Disease Susceptibility , Gene Expression Regulation, Plant , Phenotype , Plant Leaves/microbiology , Plants, Genetically Modified , Transformation, Genetic
4.
Plant Dis ; 103(7): 1595-1604, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31059384

ABSTRACT

Alternaria leaf spot (caused by Alternaria spp.) is one of the most common foliar diseases of cotton (Gossypium spp.) and occurs in most cotton-growing regions of the world. In surveys of commercial cotton fields, Alternaria leaf spot has increased in prevalence and incidence in southern New Mexico due to favorable environmental conditions in recent years. Incidence, severity, and etiology of leaf spot of cotton in southern New Mexico were determined. Fourteen cotton fields with plants exhibiting leaf spot symptoms were evaluated in October and November 2016, when plants were at late growth stage. Disease incidence was 100% in 13 of the fields, and averaged 70% in the 14th field. Average disease severity index for all fields ranged from 21.5 to 87.0. For identification of the causal agent, 14 isolates (one from each field) were characterized based on morphological features and PCR using universal primers ITS4/ITS5 and primers targeting the plasma membrane ATPase gene. Colonies of all 14 isolates were olive green with distinct white margins and relatively small spores when compared with reference isolates of large-spored species. All 14 isolates were identified as A. alternata. The fungus grew on potato dextrose agar from 5 to 35°C, and optimum growth occurred at temperatures between 20 and 30°C. Cotton plants inoculated with selected isolates of A. alternata displayed symptoms similar to those observed under field conditions. This is the first report of A. alternata as a causal agent of Alternaria leaf spot on cotton in southern New Mexico.


Subject(s)
Alternaria , Gossypium , Alternaria/genetics , Alternaria/physiology , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Gossypium/microbiology , New Mexico , Plant Diseases/microbiology
5.
PLoS Pathog ; 7(10): e1002303, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22022269

ABSTRACT

Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.


Subject(s)
DEAD-box RNA Helicases/metabolism , Genome, Viral , Proto-Oncogene Proteins/metabolism , Spumavirus/genetics , Spumavirus/physiology , Virus Assembly , Adenosine Triphosphate/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , DEAD-box RNA Helicases/genetics , Gene Products, gag/metabolism , HEK293 Cells , Humans , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...