Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2615: 427-441, 2023.
Article in English | MEDLINE | ID: mdl-36807807

ABSTRACT

Mitochondrial DNA (mtDNA) encodes components essential for cellular respiration. Low levels of point mutations and deletions accumulate in mtDNA during normal aging. However, improper maintenance of mtDNA results in mitochondrial diseases, stemming from progressive loss of mitochondrial function through the accelerated formation of deletions and mutations in mtDNA. To better understand the molecular mechanisms underlying the creation and propagation of mtDNA deletions, we developed the LostArc next-generation DNA sequencing pipeline to detect and quantify rare mtDNA species in small tissue samples. LostArc procedures are designed to minimize PCR amplification of mtDNA and instead achieve enrichment of mtDNA by selective destruction of nuclear DNA. This approach leads to cost-effective, high-depth sequencing of mtDNA with a sensitivity sufficient to identify one mtDNA deletion per million mtDNA circles. Here, we describe detailed protocols for isolation of genomic DNA from mouse tissues, enrichment of mtDNA through enzymatic destruction of linear nuclear DNA, and preparation of libraries for unbiased next-generation sequencing of mtDNA.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Mice , Animals , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Point Mutation , High-Throughput Nucleotide Sequencing/methods
2.
Nucleic Acids Res ; 50(22): 12844-12855, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36533450

ABSTRACT

Pif1 family 5' → 3' DNA helicases are important for replication fork progression and genome stability. The budding yeast Saccharomyces cerevisiae encodes two Pif1 family helicases, Rrm3 and Pif1, both of which are multi-functional. Here we describe novel functions for Rrm3 in promoting mutation avoidance during DNA replication. We show that loss of RRM3 results in elevated spontaneous mutations made by DNA polymerases Pols ϵ and δ, which are subject to DNA mismatch repair. The absence of RRM3 also causes higher mutagenesis by the fourth B-family DNA polymerase Pol ζ. By genome-wide analysis, we show that the mutational consequences due to loss of RRM3 vary depending on the genomic locus. Rrm3 promotes the accuracy of DNA replication by Pols ϵ and δ across the genome, and it is particularly important for preventing Pol ζ-dependent mutagenesis at tRNA genes. In addition, mutation avoidance by Rrm3 depends on its helicase activity, and Pif1 serves as a backup for Rrm3 in suppressing mutagenesis. We present evidence that the sole human Pif1 family helicase in human cells likely also promotes replication fidelity, suggesting that a role for Pif1 family helicases in mutation avoidance may be evolutionarily conserved, a possible underlying mechanism for its potential tumor-suppressor function.


Subject(s)
DNA Helicases , DNA Replication , Humans , Cells, Cultured , Conserved Sequence , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Nat Struct Mol Biol ; 28(12): 1020-1028, 2021 12.
Article in English | MEDLINE | ID: mdl-34887558

ABSTRACT

Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.


Subject(s)
DNA Mismatch Repair/genetics , DNA Polymerase III/metabolism , DNA, Fungal/biosynthesis , Saccharomyces cerevisiae/genetics , DNA Polymerase II/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
Crit Rev Biochem Mol Biol ; 56(1): 109-124, 2021 02.
Article in English | MEDLINE | ID: mdl-33461360

ABSTRACT

Ribonucleotides are the most abundant non-canonical nucleotides in the genome. Their vast presence and influence over genome biology is becoming increasingly appreciated. Here we review the recent progress made in understanding their genomic presence, incorporation characteristics and usefulness as biomarkers for polymerase enzymology. We also discuss ribonucleotide processing, the genetic consequences of unrepaired ribonucleotides in DNA and evidence supporting the significance of their transient presence in the nuclear genome.


Subject(s)
DNA Replication/genetics , DNA/genetics , DNA/metabolism , Ribonucleotides/genetics , Ribonucleotides/metabolism , Animals , Biomarkers/metabolism , Cell Nucleus/metabolism , DNA Repair/genetics , DNA-Directed DNA Polymerase/metabolism , Genome, Mitochondrial , Genomic Instability , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
Genome Biol ; 21(1): 248, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943091

ABSTRACT

BACKGROUND: Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. RESULTS: To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. CONCLUSIONS: These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.


Subject(s)
DNA Polymerase gamma/genetics , DNA, Mitochondrial/analysis , Genetic Techniques , Mitochondrial Diseases/genetics , Sequence Deletion , Software , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , DNA Replication , DNA, Mitochondrial/metabolism , HEK293 Cells , Humans , Middle Aged , Quadriceps Muscle/chemistry , Quadriceps Muscle/pathology , Young Adult
6.
Curr Genet ; 66(2): 299-302, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31493018

ABSTRACT

Three major eukaryotic DNA polymerases, Polymerases α, δ, and ε (Pols α, δ, and ε), perform the fundamental process of DNA synthesis at the replication fork both accurately and efficiently. In trying to understand the necessity and flexibility of the polymerase usage, we recently reported that budding yeast cells lacking Pol ε exonuclease and polymerase domains (pol2-16) survive, but have severe growth defects, checkpoint activation, increased level of dNTP pools as well as significant increase in the mutation rates. Herein, we suggest new opportunities to distinguish the roles of Pol ε from those of two other eukaryotic B-family DNA polymerases, Pols δ and ζ.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , Saccharomycetales/enzymology , Fungal Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism
7.
Nat Commun ; 10(1): 3992, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488849

ABSTRACT

Most current evidence indicates that DNA polymerases ε and δ, respectively, perform the bulk of leading and lagging strand replication of the eukaryotic nuclear genome. Given that ribonucleotide and mismatch incorporation rates by these replicases influence somatic and germline patterns of variation, it is important to understand the details and exceptions to this overall division of labor. Using an improved method to map where these replicases incorporate ribonucleotides during replication, here we present evidence that DNA polymerase δ universally participates in initiating leading strand synthesis and that nascent leading strand synthesis switches from Pol ε to Pol δ during replication termination. Ribonucleotide maps from both the budding and fission yeast reveal conservation of these processes. These observations of replisome dynamics provide important insight into the mechanisms of eukaryotic replication and genome maintenance.


Subject(s)
DNA Polymerase III/metabolism , DNA Polymerase II/metabolism , DNA Replication/physiology , DNA Polymerase III/genetics , Eukaryotic Cells/metabolism , Genomics , Models, Biological , Ribonucleotides/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
8.
Mol Cell ; 76(3): 371-381.e4, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31495565

ABSTRACT

Break-induced replication (BIR) is a pathway of homology-directed repair that repairs one-ended DNA breaks, such as those formed at broken replication forks or uncapped telomeres. In contrast to conventional S phase DNA synthesis, BIR proceeds by a migrating D-loop and results in conservative synthesis of the nascent strands. DNA polymerase delta (Pol δ) initiates BIR; however, it is not known whether synthesis of the invading strand switches to a different polymerase or how the complementary strand is synthesized. By using alleles of the replicative DNA polymerases that are permissive for ribonucleotide incorporation, thus generating a signature of their action in the genome that can be identified by hydrolytic end sequencing, we show that Pol δ replicates both the invading and the complementary strand during BIR. In support of this conclusion, we show that depletion of Pol δ from cells reduces BIR, whereas depletion of Pol ε has no effect.


Subject(s)
DNA Breaks , DNA Polymerase III/metabolism , DNA Replication , DNA, Fungal/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA Polymerase III/genetics , DNA, Fungal/genetics , HEK293 Cells , HeLa Cells , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
9.
DNA Repair (Amst) ; 84: 102641, 2019 12.
Article in English | MEDLINE | ID: mdl-31311768

ABSTRACT

Ribonucleotides are the most common non-canonical nucleotides incorporated into DNA during replication, and their processing leads to mutations and genome instability. Yeast mutation reporter systems demonstrate that 2-5 base pair deletions (Δ2-5bp) in repetitive DNA are a signature of unrepaired ribonucleotides, and that these events are initiated by topoisomerase 1 (Top1) cleavage. However, a detailed understanding of the frequency and locations of ribonucleotide-dependent mutational events across the genome has been lacking. Here we present the results of genome-wide mutational analysis of yeast strains deficient in Ribonucleotide Excision Repair (RER). We identified mutations that accumulated over thousands of generations in strains expressing either wild-type or variant replicase alleles (M644G Pol ε, L612M Pol δ, L868M Pol α) that confer increased ribonucleotide incorporation into DNA. Using a custom-designed mutation-calling pipeline called muver (for mutationes verificatae), we observe a number of surprising mutagenic features. This includes a 24-fold preferential elevation of AG and AC relative to AT dinucleotide deletions in the absence of RER, suggesting specificity for Top1-initiated deletion mutagenesis. Moreover, deletion rates in di- and trinucleotide repeat tracts increase exponentially with tract length. Consistent with biochemical and reporter gene mutational analysis, these deletions are no longer observed upon deletion of TOP1. Taken together, results from these analyses demonstrate the global impact of genomic ribonucleotide processing by Top1 on genome integrity.


Subject(s)
DNA Repair , DNA Topoisomerases, Type I/metabolism , Mutation Rate , Ribonucleotides/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Topoisomerases, Type I/genetics , DNA-Directed DNA Polymerase/metabolism , Dinucleotide Repeats , Gene Deletion , Genomic Instability , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Trinucleotide Repeats
10.
Nucleic Acids Res ; 47(8): 3986-3995, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30698744

ABSTRACT

The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.


Subject(s)
DNA Polymerase II/genetics , DNA, Fungal/genetics , DNA-Directed DNA Polymerase/genetics , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Catalytic Domain , DNA Polymerase II/metabolism , DNA Replication , DNA, Fungal/metabolism , DNA-Directed DNA Polymerase/deficiency , Gene Deletion , Mutation Rate , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
11.
BMC Genomics ; 19(1): 345, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29743009

ABSTRACT

BACKGROUND: Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. RESULTS: Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. CONCLUSIONS: Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.


Subject(s)
Genome, Fungal , Mutation Accumulation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA/methods , Software , Computational Biology , Fathers , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation Rate , Reference Standards
12.
Nat Commun ; 9(1): 858, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487291

ABSTRACT

To investigate nuclear DNA replication enzymology in vivo, we have studied Saccharomyces cerevisiae strains containing a pol2-16 mutation that inactivates the catalytic activities of DNA polymerase ε (Pol ε). Although pol2-16 mutants survive, they present very tiny spore colonies, increased doubling time, larger than normal cells, aberrant nuclei, and rapid acquisition of suppressor mutations. These phenotypes reveal a severe growth defect that is distinct from that of strains that lack only Pol ε proofreading (pol2-4), consistent with the idea that Pol ε is the major leading-strand polymerase used for unstressed DNA replication. Ribonucleotides are incorporated into the pol2-16 genome in patterns consistent with leading-strand replication by Pol δ when Pol ε is absent. More importantly, ribonucleotide distributions at replication origins suggest that in strains encoding all three replicases, Pol δ contributes to initiation of leading-strand replication. We describe two possible models.


Subject(s)
DNA Polymerase III/metabolism , DNA Replication , Saccharomyces cerevisiae/enzymology , DNA Polymerase II/metabolism , Models, Genetic , Mutation , Phenotype , Replication Origin , Saccharomyces cerevisiae/genetics
13.
Methods Mol Biol ; 1672: 329-345, 2018.
Article in English | MEDLINE | ID: mdl-29043634

ABSTRACT

Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.


Subject(s)
DNA Replication , DNA , High-Throughput Nucleotide Sequencing , Ribonucleotides , Computational Biology/methods , DNA/isolation & purification , DNA/metabolism , DNA Repair , DNA, Fungal/isolation & purification , Gene Library , Genomics/methods , Hydrolysis , Ribonuclease H/metabolism , Yeasts
14.
Proc Natl Acad Sci U S A ; 114(10): 2663-2668, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223526

ABSTRACT

Gene-gene or gene-drug interactions are typically quantified using fitness as a readout because the data are continuous and easily measured in high throughput. However, to what extent fitness captures the range of other phenotypes that show synergistic effects is usually unknown. Using Saccharomyces cerevisiae and focusing on a matrix of DNA repair mutants and genotoxic drugs, we quantify 76 gene-drug interactions based on both mutation rate and fitness and find that these parameters are not connected. Independent of fitness defects, we identified six cases of synthetic hypermutation, where the combined effect of the drug and mutant on mutation rate was greater than predicted. One example occurred when yeast lacking RAD1 were exposed to cisplatin, and we characterized this interaction using whole-genome sequencing. Our sequencing results indicate mutagenesis by cisplatin in rad1Δ cells appeared to depend almost entirely on interstrand cross-links at GpCpN motifs. Interestingly, our data suggest that the following base on the template strand dictates the addition of the mutated base. This result differs from cisplatin mutation signatures in XPF-deficient Caenorhabditis elegans and supports a model in which translesion synthesis polymerases perform a slippage and realignment extension across from the damaged base. Accordingly, DNA polymerase ζ activity was essential for mutagenesis in cisplatin-treated rad1Δ cells. Together these data reveal the potential to gain new mechanistic insights from nonfitness measures of gene-drug interactions and extend the use of mutation accumulation and whole-genome sequencing analysis to define DNA repair mechanisms.


Subject(s)
Cisplatin/toxicity , DNA Repair Enzymes/genetics , Endonucleases/genetics , Genetic Fitness/drug effects , Mutagenesis/drug effects , Saccharomyces cerevisiae Proteins/genetics , Cisplatin/therapeutic use , DNA Damage/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , DNA-Directed DNA Polymerase/genetics , Mutagenicity Tests , Mutation Rate , Saccharomyces cerevisiae/genetics , Whole Genome Sequencing
15.
Trends Cell Biol ; 26(9): 640-654, 2016 09.
Article in English | MEDLINE | ID: mdl-27262731

ABSTRACT

DNA polymerases synthesize DNA in only one direction, but large genomes require RNA priming and bidirectional replication from internal origins. We review here the physical, chemical, and evolutionary constraints underlying these requirements. We then consider the roles of the major eukaryotic replicases, DNA polymerases α, δ, and ɛ, in replicating the nuclear genome. Pol α has long been known to extend RNA primers at origins and on Okazaki fragments that give rise to the nascent lagging strand. Taken together, more recent results of mutation and ribonucleotide incorporation mapping, electron microscopy, and immunoprecipitation of nascent DNA now lead to a model wherein Pol ɛ and Pol δ, respectively, synthesize the majority of the nascent leading and lagging strands of undamaged DNA.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , Genome , Animals , Eukaryotic Cells/metabolism , Humans , Models, Biological , Mutation/genetics
16.
Nat Rev Mol Cell Biol ; 17(6): 350-63, 2016 06.
Article in English | MEDLINE | ID: mdl-27093943

ABSTRACT

The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.


Subject(s)
DNA Replication , Ribonucleotides/metabolism , Animals , DNA/biosynthesis , DNA/genetics , DNA Repair , Humans , Polymerization
17.
Crit Rev Biochem Mol Biol ; 51(1): 43-52, 2016.
Article in English | MEDLINE | ID: mdl-26822554

ABSTRACT

The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ɛ, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.


Subject(s)
DNA Replication , Genomic Instability , Base Pair Mismatch , DNA Repair , DNA-Directed DNA Polymerase/metabolism
18.
Nucleic Acids Res ; 44(4): 1669-80, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26609135

ABSTRACT

The absolute and relative concentrations of the four dNTPs are key determinants of DNA replication fidelity, yet the consequences of altered dNTP pools on replication fidelity have not previously been investigated on a genome-wide scale. Here, we use deep sequencing to determine the types, rates and locations of uncorrected replication errors that accumulate in the nuclear genome of a mismatch repair-deficient diploid yeast strain with elevated dCTP and dTTP concentrations. These imbalanced dNTP pools promote replication errors in specific DNA sequence motifs suggesting increased misinsertion and increased mismatch extension at the expense of proofreading. Interestingly, substitution rates are similar for leading and lagging strand replication, but are higher in regions replicated late in S phase. Remarkably, the rate of single base deletions is preferentially increased in coding sequences and in short rather than long mononucleotides runs. Based on DNA sequence motifs, we propose two distinct mechanisms for generating single base deletions in vivo. Collectively, the results indicate that elevated dCTP and dTTP pools increase mismatch formation and decrease error correction across the nuclear genome, and most strongly increases mutation rates in coding and late replicating sequences.


Subject(s)
DNA Replication/genetics , Deoxyribonucleotides/metabolism , Genome, Fungal , Saccharomyces cerevisiae/genetics , Base Sequence , Cell Cycle/genetics , DNA Mismatch Repair/genetics , Deoxyribonucleotides/genetics , High-Throughput Nucleotide Sequencing , Mutagenesis/genetics , Mutation , Mutation Rate
19.
Genetics ; 201(3): 951-61, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26400612

ABSTRACT

We show by whole genome sequence analysis that loss of RNase H2 activity increases loss of heterozygosity (LOH) in Saccharomyces cerevisiae diploid strains harboring the pol2-M644G allele encoding a mutant version of DNA polymerase ε that increases ribonucleotide incorporation. This led us to analyze the effects of loss of RNase H2 on LOH and on nonallelic homologous recombination (NAHR) in mutant diploid strains with deletions of genes encoding RNase H2 subunits (rnh201Δ, rnh202Δ, and rnh203Δ), topoisomerase 1 (TOP1Δ), and/or carrying mutant alleles of DNA polymerases ε, α, and δ. We observed an ∼7-fold elevation of the LOH rate in RNase H2 mutants encoding wild-type DNA polymerases. Strains carrying the pol2-M644G allele displayed a 7-fold elevation in the LOH rate, and synergistic 23-fold elevation in combination with rnh201Δ. In comparison, strains carrying the pol2-M644L mutation that decreases ribonucleotide incorporation displayed lower LOH rates. The LOH rate was not elevated in strains carrying the pol1-L868M or pol3-L612M alleles that result in increased incorporation of ribonucleotides during DNA synthesis by polymerases α and δ, respectively. A similar trend was observed in an NAHR assay, albeit with smaller phenotypic differentials. The ribonucleotide-mediated increases in the LOH and NAHR rates were strongly dependent on TOP1. These data add to recent reports on the asymmetric mutagenicity of ribonucleotides caused by topoisomerase 1 processing of ribonucleotides incorporated during DNA replication.


Subject(s)
Gene Rearrangement , Genes, Fungal , Ribonucleotides/metabolism , Saccharomyces cerevisiae/genetics , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA Replication , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA, Fungal/biosynthesis , Genomic Instability , Karyotype , Loss of Heterozygosity , Ribonucleases/genetics , Ribonucleases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Analysis, DNA , Translocation, Genetic
20.
DNA Repair (Amst) ; 31: 41-51, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25996407

ABSTRACT

Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.


Subject(s)
DNA Mismatch Repair , DNA Replication , Saccharomyces cerevisiae/genetics , Base Pair Mismatch , Base Sequence , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Molecular Sequence Data , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...