Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131564, 2024 May.
Article in English | MEDLINE | ID: mdl-38614174

ABSTRACT

Contaminating microplastics can interact with food proteins in the food matrix and during digestion. This study investigated adsorption of chicken egg protein ovalbumin to polystyrene (PS, 110 and 260 µm) and polyethylene terephthalate (PET, 140 µm) MPs in acidic and neutral conditions and alterations in ovalbumin structure. Ovalbumin adsorption affinity depended on MPs size (smaller > larger), type (PS > PET) and pH (pH 3 > pH 7). In bulk solution, MPs does not change ovalbumin secondary structure significantly, but induces loosening (at pH 3) and tightening (at pH 7) of tertiary structure. Formed soft corona exclusively consists of full length non-native ovalbumin, while in hard corona also shorter ovalbumin fragments were found. At pH 7 soft corona ovalbumin has rearranged but still preserved level of ordered secondary structure, resulting in preserved thermostability and proteolytic stability, but decreased ability to form fibrils upon heating. Secondary structure changes in soft corona resemble changes in native ovalbumin induced by heat treatment (80 °C). Ovalbumin is abundantly present in corona around microplastics also in the presence of other egg white proteins. These results imply that microplastics contaminating food may bind and change structure and functional properties of the main egg white protein.


Subject(s)
Microplastics , Ovalbumin , Polyethylene Terephthalates , Polystyrenes , Ovalbumin/chemistry , Polystyrenes/chemistry , Microplastics/chemistry , Polyethylene Terephthalates/chemistry , Hydrogen-Ion Concentration , Adsorption , Animals , Chickens , Protein Structure, Secondary
2.
Polymers (Basel) ; 15(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139955

ABSTRACT

Manufactured nanoplastic particles (NPs) are indispensable for in vitro and in vivo testing and a health risk assessment of this emerging environmental contaminant is needed. The high surface area and inherent hydrophobicity of plastic materials makes the production of NPs devoid of any contaminants very challenging. In this study, we produced nanoprecipitated polyethylene terephthalate (PET) NPs (300 nm hydrodynamic diameter) with an overall yield of 0.76%. The presence of the ionic surfactant sodium dodecyl sulfate (SDS) was characterized by 1H NMR, where the relative ratio of NP/surfactant was monitored on the basis of the chemical shifts characteristic of PET and SDS. For a wide range of surfactant/NP ratios (17:100 to 1.2:100), the measured zeta potential changed from -42.10 to -34.93 mV, but with an NP concentration up to 100 µg/mL, no clear differences were observed in the cellular assays performed in protein-rich media on primary human cells. The remaining impurities contributed to the outcome of the biological assays applied in protein-free buffers, such as human red blood cell hemolysis. The presence of SDS increased the NP-induced hemolysis by 1.5% in protein-rich buffer and by 7.5% in protein-free buffer. As the size, shape, zeta potential, and contaminants of NPs may all be relevant parameters for the biological effects of NPs, the relative quantification of impurities exemplified in our work by the application of 1H NMR for PET NPs and the ionic surfactant SDS could be a valuable auxiliary method in the quality control of manufactured NPs.

3.
Foods ; 12(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628042

ABSTRACT

The ongoing use of plastic polymers to manufacture food packaging has raised concerns about the presence of nano- and microplastics (NMPs) in a variety of foods. This review provides the most recent data on NMPs' migration from plastic packaging into dairy products. Also discussed are the possible effects of NMPs on nutrient digestion, absorption, and metabolism. Different kinds of dairy products, including skimmed milk, whole liquid milk, powder milk, and infant formula milk, have been found to contain NMPs of various sizes, shapes, and concentrations. NMPs may interact with proteins, carbohydrates, and fats and have a detrimental impact on how well these nutrients are digested and absorbed by the body. The presence of NMPs in the gastrointestinal tract may impact how lipids, proteins, glucose, iron, and energy are metabolized, increasing the risk of developing various health conditions. In addition to NMPs, plastic oligomers released from food packaging material have been found to migrate to various foods and food simulants, though information regarding their effect on human health is limited. Viewpoints on potential directions for future studies on NMPs and their impact on nutrient digestion, absorption, and health are also presented in this review.

4.
Environ Pollut ; 335: 122282, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37516294

ABSTRACT

Human ingestion of microplastics (MPs) is common and inevitable due to the widespread contamination of food items, but implications on the gastric digestion of food proteins are still unknown. In this study, the interactions between pepsin and polystyrene (PS) MPs were evaluated by investigating enzyme activity and conformation in a simulated human gastric environment in the presence or absence of PS MPs. The impact on food digestion was also assessed by monitoring the kinetics of protein hydrolysis through static in vitro gastric digestion of cow's milk contaminated with PS. The binding of pepsin to PS showed that the surface chemistry of MPs dictates binding affinity. The key contributor to pepsin adsorption seems to be π-π interactions between the aromatic residues and the PS phenyl rings. During quick exposure (10 min) of pepsin to increasing concentrations (222, 2219, 22188 particles/mL) of 10 µm PS (PS10) and 100 µm PS (PS100), total enzymatic activities were not affected remarkably. However, upon prolonged exposure at 1 and 2 h, preferential binding of pepsin to the small, low zeta-potential PS caused structural changes in the protein which led to a significant reduction of its activity. Digestion of cow's milk mixed with PS10 resulted in transient accumulation of larger peptides (10-35 kDa) and reduced bioavailability of short peptides (2-9 kDa) in the gastric phase. This, however, was only observed at extremely high PS10 concentration (0.3 mg/mL or 5.46E+05 particles/mL). The digestion of milk peptides, bound preferentially over pepsin within the hard corona on the PS10 surface, was delayed up to 15 min in comparison to bulk protein digestion. Intact caseins, otherwise rapidly digested, remained bound to PS10 in the hard corona for up to 15 min. This work presents valuable insights regarding the interaction of MPs, food proteins, and pepsin, and their dynamics during gastric digestion.


Subject(s)
Milk Proteins , Pepsin A , Humans , Milk Proteins/metabolism , Pepsin A/metabolism , Microplastics , Polystyrenes , Plastics , Peptides/chemistry , Peptides/metabolism , Caseins/chemistry , Caseins/metabolism , Allergens , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL
...