Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 27(23): 14160-8, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22023013

ABSTRACT

The surface properties and biocompatibility of a class of thermoplastic polyurethanes (TPUs) with applications in blood-contacting medical devices have been studied. Thin films of commercial TPUs and novel polyisobutylene (PIB)-poly(tetramethylene oxide) (PTMO) TPUs were characterized by contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM) imaging. PIB-PTMO TPU surfaces have significantly higher C/N ratios and lower amounts of oxygen than the theoretical bulk composition, which is attributed to surface enrichment of PIB. Greater differences in the C/N ratios were observed with the softer compositions due to their higher relative amounts of PIB. The contact angles were higher on PIB-PTMO TPUs than on commercial polyether TPUs, indicating lower surface energy. AFM imaging showed phase separation and increasing domain sizes with increasing hard segment content. The biocompatibility was investigated by quantifying the adsorption of fouling and passivating proteins, fibrinogen (Fg) and human serum albumin (HSA) respectively, onto thin TPU films spin coated onto the electrode of a quartz crystal microbalance with dissipation monitoring (QCM-D). Competitive adsorption experiments were performed with a mixture of Fg and albumin in physiological ratio followed by binding of GPIIb-IIIa, the platelet receptor ligand that selectively binds to Fg. The QCM-D results indicate similar adsorbed amounts of both Fg and HSA on PIB-PTMO TPUs and commercial TPUs. The strength of the protein interactions with the various TPU surfaces measured with AFM (colloidal probe) was similar among the various TPUs. These results suggest excellent biocompatibility of these novel PIB-PTMO TPUs, similar to that of polyether TPUs.


Subject(s)
Fibrinogen/chemistry , Polyenes/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Serum Albumin/chemistry , Temperature , Adsorption , Humans , Particle Size , Surface Properties
2.
Langmuir ; 27(5): 1891-9, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21226505

ABSTRACT

A focused library of methacrylate terpolymers was synthesized to explore the effects of varying surface chemistry and adhesive peptide ligands on cell function. The chemical diversity of methacrylate monomers enabled construction of a library of polymers in which one can systematically vary the chemical composition to achieve a wide range of contact angle, Young's modulus, and T(g) values. Furthermore, the materials were designed to allow surface immobilization of bioactive peptides. We then examined the effects of these material compositions on protein adsorption and cell attachment, proliferation, and differentiation. We observed that chemical composition of the polymers was an important determinant for NIH 3T3 cell attachment and proliferation, as well as human mesenchymal stem cell differentiation, and correlated directly with the ability of the polymers to adsorb proteins that mediate cell adhesion. Importantly, functionalization of the methacrylate terpolymer library with an adhesive GRGDS peptide normalized cellular responses. RGD-functionalized polymers uniformly exhibited robust attachment, proliferation, and differentiation irrespective of the underlying substrate chemistry. These studies provide a library-based approach to rapidly explore the biological functionality of biomaterials with a wide range of compositions and highlight the importance of cell and protein cell adhesion in predicting their performance.


Subject(s)
Cell Physiological Phenomena/drug effects , Combinatorial Chemistry Techniques/methods , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/pharmacology , Adhesives/chemistry , Adsorption , Animals , Cattle , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Humans , Mechanical Phenomena , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , NIH 3T3 Cells , Oligopeptides/chemistry , Polymethacrylic Acids/chemical synthesis , Serum Albumin, Bovine/chemistry , Surface Properties
3.
J Biomed Mater Res A ; 93(2): 505-14, 2010 May.
Article in English | MEDLINE | ID: mdl-19585568

ABSTRACT

Regulation of smooth muscle cell adhesion, proliferation, and motility on biomaterials is critical to the performance of blood-contacting implants and vascular tissue engineering scaffolds. The goal of this study was to examine the underlying substrate-smooth muscle cell response relations, using a selection of polymers representative of an expansive library of multifunctional, tyrosine-derived polycarbonates. Three chemical components within the polymer structure were selectively varied through copolymerization: (1) the content of iodinated tyrosine to achieve X-ray visibility; (2) the content of poly(ethylene glycol) (PEG) to decrease protein adsorption and cell adhesivity; and (3) the content of desaminotyrosyl-tyrosine (DT), which regulates the rate of polymer degradation. Using quartz crystal microbalance with dissipation, we quantified differential serum protein adsorption behavior because of the chemical components DT, iodinated tyrosine, and PEG: increased PEG content within the polymer structure progressively decreased protein adsorption but the simultaneous presence of both DT and iodinated tyrosine reversed the effects of PEG. The complex interplay of these components was next tested on the adhesion, proliferation, and motility behavior cultured human aortic smooth muscle cells. The incorporation of PEG into the polymer reduced cell attachment, which was reversed in the presence of iodinated tyrosine. Further, we found that as little as 10% DT content was sufficient to negate the PEG effect in polymers containing iodinated tyrosine, whereas in non-iodinated polymers, the PEG effect on cell attachment was reversed. Cross-functional analysis of motility and proliferation revealed divergent substrate chemistry related cell response regimes. For instance, within the series of polymers containing both iodinated tyrosine and 10% of DT, increasing PEG levels lowered smooth muscle cell motility without a change in the rate of cell proliferation. In contrast, for non-iodinated tyrosine and 10% of DT, increasing PEG levels increased cell proliferation significantly while reducing cell motility. Clearly, the polycarbonate polymer library offers a sensitive platform to modulate cell adhesion, proliferation, and motility responses, which, in turn, may have implications for controlling vascular remodeling in vivo. Additionally, our data suggests unique biorelevant properties following the incorporation of iodinated subunits in a polymeric biomaterial as a potential platform for X-ray visible devices.


Subject(s)
Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Polycarboxylate Cement , Polyethylene Glycols/chemistry , Tyrosine/chemistry , Adsorption , Anions/chemistry , Biocompatible Materials , Cell Shape , Cells, Cultured , Humans , Iodine/chemistry , Materials Testing , Molecular Structure , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Polycarboxylate Cement/chemistry , Polycarboxylate Cement/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...