Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(21): 5795-5798, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910761

ABSTRACT

The natural oscillations of the electromagnetic field in a particle made from left-handed metamaterial, where both permittivity and permeability are negative, are considered. Based on the exact solution of the sourceless Maxwell equations, it is shown that due to the opposite directions of the phase and group velocities in the metamaterial, natural oscillations in such particles decay exponentially at infinity, that is, these natural oscillations can be considered as trapped modes with a finite energy. The manifestation of such modes in experiments with Bessel beams is also discussed.

2.
Sci Rep ; 11(1): 23453, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34873201

ABSTRACT

Resonant scattering of electromagnetic waves is a widely studied phenomenon with a vast range of applications that span completely different fields, from astronomy or meteorology to spectroscopy and optical circuitry. Despite being subject of intensive research for many decades, new fundamental aspects are still being uncovered, in connection with emerging areas, such as metamaterials and metasurfaces or quantum and topological optics, to mention some. In this work, we demonstrate yet one more novel phenomenon arising in the scattered near field of medium sized objects comprising high refractive index materials, which allows the generation of colossal local magnetic fields. In particular, we show that GHz radiation illuminating a high refractive index ceramic sphere creates instant magnetic near-fields comparable to those in neutron stars, opening up a new paradigm for creation of giant magnetic fields on the millimeter's scale.

3.
Opt Express ; 21(11): 13691-8, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23736622

ABSTRACT

Tunable lattice resonances are demonstrated in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm (1.89 µm to 2.27 µm) is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices.

4.
Opt Express ; 18(12): 12421-9, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20588369

ABSTRACT

Planar hybrid metamaterial with different split ring resonators (SRR) structure dimensions are fabricated on silicon substrates by femtosecond (fs) laser micro-lens array (MLA) lithography and lift-off process. The fabricated metamaterial structures consist of: (a) uniform metamaterial with 4 SRRs at same design and dimension as a unit cell and (b) hybrid metamaterial with 4 SRRs at same design but different dimensions as a unit cell. The electromagnetic field responses of these hybrid and single dimension metamaterial structures are characterized using a terahertz (THz) time-domain spectroscopy. Transmission spectra of these metamaterial show that a broader resonance peak is formed when 2 SRRs are close to each other. FDTD simulation proves that there is a strong mutual coupling between 2 SRRs besides a strong localized electric field at the split gap, which can enhance the electric field up to 364 times for tunable, broad band and high sensitivity THz sensing. Meanwhile, the strong coupling effect could lead to the formation of an additional resonance peak at approximately 0.2 THz in the THz spectra regime.

5.
Opt Express ; 18(2): 1684-94, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173996

ABSTRACT

We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.


Subject(s)
Lasers , Models, Theoretical , Terahertz Radiation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Nonlinear Dynamics , Reproducibility of Results , Sensitivity and Specificity
6.
Opt Express ; 16(24): 19706-11, 2008 Nov 24.
Article in English | MEDLINE | ID: mdl-19030056

ABSTRACT

Based on medium-tuned optical field enhancement effect around a self-assembled particle-lens array (PLA) irradiated with a femtosecond (fs) laser source, we demonstrated that high-precision periodical array of micro/nano-structures can be readily fabricated on glass surface or inside glass in large areas in parallel without any cracks or debris. The technique has potential for rapid fabrication of three-dimensional structures in multiple layers inside glass.

7.
J Chem Phys ; 128(9): 094705, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18331108

ABSTRACT

In understanding of the hot spot phenomenon in single-molecule surface enhanced Raman scattering (SM-SERS), the electromagnetic field within the gaps of dimers (i.e., two particle systems) has attracted much interest as it provides significant field amplification over single isolated nanoparticles. In addition to the existing understanding of the dimer systems, we show in this paper that field enhancement within the gaps of a particle chain could maximize at a particle number N>2, due to the near-field coupled plasmon resonance of the chain. This particle number effect was theoretically observed for the gold (Au) nanoparticles chain but not for the silver (Ag) chain. We attribute the reason to the different behaviors of the dissipative damping of gold and silver in the visible wavelength range. The reported effect can be utilized to design effective gold substrate for SM-SERS applications.

8.
Nanotechnology ; 19(37): 375701, 2008 Sep 17.
Article in English | MEDLINE | ID: mdl-21832555

ABSTRACT

We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.

9.
Opt Lett ; 29(17): 2055-7, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15455778

ABSTRACT

It is shown that the cross talk in three-dimensional optical photochemical recording results in ineffectiveness of single-photon recording. For two-photon recording for a given allowed cross-talk level there are optimal distances between spots that provide the maximum memory density. Estimations show that real restrictions here are connected with the reading of information.

10.
Chem Rev ; 103(2): 519-52, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12580641
SELECTION OF CITATIONS
SEARCH DETAIL
...