Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 508(3): 413-7, 2001 Nov 23.
Article in English | MEDLINE | ID: mdl-11728463

ABSTRACT

Acridone synthase (ACS) and chalcone synthase (CHS) catalyse the pivotal reactions in the formation of acridone alkaloids or flavonoids. While acridone alkaloids are confined almost exclusively to the Rutaceae, flavonoids occur abundantly in all seed-bearing plants. ACSs and CHSs had been cloned from Ruta graveolens and shown to be closely related polyketide synthases which use N-methylanthraniloyl-CoA and 4-coumaroyl-CoA, respectively, as the starter substrate to produce the acridone or naringenin chalcone. As proposed for the related 2-pyrone synthase from Gerbera, the differential substrate specificities of ACS and CHS might be attributed to the relative volume of the active site cavities. The primary sequences as well as the immunological cross reactivities and molecular modeling studies suggested an almost identical spatial structure for ACS and CHS. Based on the Ruta ACS2 model the residues Ser132, Ala133 and Val265 were assumed to play a critical role in substrate specificity. Exchange of a single amino acid (Val265Phe) reduced the catalytic activity by about 75% but grossly shifted the specificity towards CHS activity, and site-directed mutagenesis replacing all three residues by the corresponding amino acids present in CHS (Ser132Thr, Ala133Ser and Val265Phe) fully transformed the enzyme to a functional CHS with comparatively marginal ACS activity. The results suggested that ACS divergently has evolved from CHS by very few amino acid exchanges, and it remains to be established why this route of functional diversity has developed in the Rutaceae only.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Directed Molecular Evolution , Rutaceae/enzymology , Acyltransferases/chemistry , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Catalysis , Cloning, Molecular , Evolution, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Protein Folding , Substrate Specificity
2.
Arch Biochem Biophys ; 393(1): 177-83, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-11516175

ABSTRACT

Flavone synthase I, a soluble 2-oxoglutarate-dependent dioxygenase catalyzing the oxidation of flavanones to flavones in several Apiaceae species, was induced in parsley cell cultures by continuous irradiation with ultraviolet/blue light for 20 h. The enzyme was extracted from these cells and purified by a revised purification protocol including the fractionation on hydroxyapatite, Fractogel EMD DEAE, and Mono Q anion exchangers, which resulted in an apparently homogeneous flavone synthase at approximately 10-fold higher yield as compared to the previous report. The homogeneous enzyme was employed to raise an antiserum in rabbit for partial immunological characterization. The specificity of the polyclonal antibodies was demonstrated by immunotitration and Western blotting of the crude ammonium sulfate-fractionated enzyme as well as of the enzyme at various stages of the purification. High titer cross-reactivity was observed toward flavone synthase I, showing two bands in the crude extract corresponding to molecular weights of 44 and 41 kDa, respectively, while only the 41 kDa was detected on further purification. The polyclonal antiserum did not cross-react with recombinantly expressed flavanone 3beta-hydroxylase from Petunia hybrida or flavonol synthase from Citrus unshiu, two related 2-oxoglutarate-dependent dioxygenases involved in the flavonoid pathway.


Subject(s)
Apiaceae/enzymology , Mixed Function Oxygenases/immunology , Mixed Function Oxygenases/isolation & purification , Antibody Specificity , Antigens/isolation & purification , Apiaceae/immunology , Blotting, Western , Cross Reactions , Flavonoids/chemistry , Flavonoids/metabolism , Immunochemistry , Molecular Weight
3.
Phytochemistry ; 58(1): 43-6, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11524111

ABSTRACT

A cDNA encoding flavone synthase I was amplified by RT-PCR from leaflets of Petroselinum crispum cv. Italian Giant seedlings and functionally expressed in yeast cells. The identity of the recombinant, 2-oxoglutarate-dependent enzyme was verified in assays converting (2S)-naringenin to apigenin.


Subject(s)
Flavanones , Mixed Function Oxygenases/genetics , Petroselinum/enzymology , Apigenin , Cloning, Molecular , DNA, Complementary , Flavonoids/metabolism , Mixed Function Oxygenases/metabolism , Plant Leaves/enzymology , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/enzymology
4.
Eur J Biochem ; 267(22): 6552-9, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11054106

ABSTRACT

The common rue, Ruta graveolens L., expresses two types of closely related polyketide synthases that condense three malonyl-CoAs with N-methylanthraniloyl-CoA or 4-coumaroyl-CoA to produce acridone alkaloids and flavonoid pigments, respectively. Two acridone synthase cDNAs (ACS1 and ACS2) have been cloned from Ruta cell cultures, and we report now the cloning of three chalcone synthase cDNAs (CHS1 to CHS3) from immature Ruta flowers. The coding regions of these three cDNAs differ only marginally, and the translated polypeptides show about 90% identity with the CHSs from Citrus sinensis but less than 75% with the Ruta endogeneous ACSs. CHS1 was functionally expressed in Eschericha coli and its substrate specificity compared with those of the recombinant ACS1 and ACS2. 4-Coumaroyl-CoA was the preferred starter substrate for CHS1, but cinnamoyl-CoA and caffeoyl-CoA were also turned over at significant rates. However, N-methylanthraniloyl-CoA was not accepted. In contrast, highly active preparations of recombinant ACS1 or ACS2 showed low, albeit significant, CHS side activities with 4-coumaroyl-CoA, which on average reached 16% (ACS1) and 12% (ACS2) of the maximal activity determined with N-methylanthraniloyl-CoA as the starter substrate, while the conversion of cinnamoyl-CoA was negligible with both ACSs. The condensation mechanism of the acridone ring system differs from that of chalcone/flavanone formation. Nevertheless, our results suggest that very minor changes in the sequences of Ruta CHS genes are sufficient to also accommodate the formation of acridone alkaloids, which will be investigated further by site-directed mutagenesis.


Subject(s)
Acyltransferases/genetics , Rosales/enzymology , Rosales/genetics , Acyltransferases/chemistry , Acyltransferases/metabolism , Amino Acid Sequence , Citrus/enzymology , Cloning, Molecular , Genes, Plant , Kinetics , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
5.
Arch Biochem Biophys ; 375(2): 364-70, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-10700394

ABSTRACT

Flavanone 3beta-hydroxylase catalyzes the Fe(II)/oxoglutarate-dependent hydroxylation of (2S)-flavanones to (2R,3R)-dihydroflavonols in the course of flavonol/anthocyanin or catechin biosynthesis. The enzyme from Petunia hybrida consists of a 41,655-Da polypeptide that is prone to rapid proteolysis in crude plant extracts as well as on expression in Escherichia coli, and commercial protease inhibitors were inefficient in stopping the degradation. To pinpoint the primary site of proteolysis and to improve the activity yields, two revised schemes of purification were developed for the recombinant polypeptides. Applying a four-step protocol based on extraction and ion-exchange chromatography at pH 7.5, the primary, catalytically inactive proteolytic enzyme fragment (1.1 mg) was isolated and shown to cross-react on Western blotting as one homogeneous band of about 38 kDa. Mass spectrometric analysis assigned a mass of 37,820 +/- 100 Da to this fragment, and partial sequencing revealed an unblocked amino terminus identical to that of the native 3beta-hydroxylase. Thus, the native enzyme had been degraded by proteolysis of a small carboxy-terminal portion, and the primary site of cleavage must be assigned most likely to the Glu 337-Leu 338 bond, accounting for a loss of about 3800 Da. Alternatively, the enzyme degradation was greatly reduced when the extraction of recombinant bacteria was carried out with phosphate buffer at pH 5.5 followed by size exlusion and anion-exchange chromatography. This rapid, two-step purification resulted in a homogeneous 3beta-hydroxylase of high specific acitivity (about 32 mkat/kg) at roughly 5% yield, and the procedure is a major breakthrough in mechanistic investigations of this class of labile dioxygenases.


Subject(s)
Mixed Function Oxygenases/isolation & purification , Mixed Function Oxygenases/metabolism , Plants/enzymology , Amino Acid Sequence , Blotting, Western , Buffers , Catalysis/drug effects , Chromatography, Gel , Chromatography, Ion Exchange , Endopeptidases/metabolism , Enzyme Stability/drug effects , Escherichia coli/genetics , Mass Spectrometry , Mixed Function Oxygenases/chemistry , Molecular Sequence Data , Molecular Weight , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Protease Inhibitors/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Time Factors
6.
FEBS Lett ; 467(2-3): 353-8, 2000 Feb 11.
Article in English | MEDLINE | ID: mdl-10675568

ABSTRACT

Flavanone 3beta-hydroxylase catalyzes the Fe(II)/oxoglutarate-dependent hydroxylation of (2S)-flavanones to (2R,3R)-dihydroflavonols in the biosynthesis of flavonoids, catechins and anthocyanidins. The enzyme had been partially purified from Petunia hybrida and proposed to be active as a dimer of roughly 75 kDa in size. More recently, the Petunia 3beta-hydroxylase was cloned and shown to be encoded in a 41655 Da polypeptide. In order to characterize the molecular composition, the enzyme was expressed in a highly active state in Escherichia coli and purified to apparent homogeneity. Size exclusion chromatographies of the pure, recombinant enzyme revealed that this flavanone 3beta-hydroxylase exists in functional monomeric and oligomeric forms. Protein cross-linking experiments employing a specific homobifunctional sulfhydryl group reagent or the photochemical activation of tryptophan residues confirmed the tendency of the enzyme to aggregate to oligomeric complexes in solution. Thorough equilibrium sedimentation analyses, however, revealed a molecular mass of 39. 2+/-12 kDa for the recombinant flavanone 3beta-hydroxylase. The result implies that the monomeric polypeptide comprises the catalytically active flavanone 3beta-hydroxylase of P. hybrida, which may readily associate in vivo with other proteins.


Subject(s)
Mixed Function Oxygenases/chemistry , Plant Proteins/chemistry , Chromatography, Gel/methods , Cloning, Molecular , Cross-Linking Reagents , Dimerization , Escherichia coli/metabolism , Flavonoids/biosynthesis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Weight , Recombinant Proteins/chemistry
7.
Eur J Biochem ; 267(3): 853-60, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10651823

ABSTRACT

Flavanone 3beta-hydroxylase (FHT) catalyzes a pivotal reaction in the formation of flavonoids, catechins, proanthocyanidins and anthocyanidins. In the presence of oxygen and ferrous ions the enzyme couples the oxidative decarboxylation of 2-oxoglutarate, releasing carbon dioxide and succinate, with the oxidation of flavanones to produce dihydroflavonols. The hydroxylase had been cloned from Petunia hybrida and expressed in Escherichia coli, and a rapid isolation method for the highly active, recombinant enzyme had been developed. Sequence alignments of the Petunia hydroxylase with various hydroxylating 2-oxoglutarate-dependent dioxygenases revealed few conserved amino acids, including a strictly conserved serine residue (Ser290). This serine was mutated to threonine, alanine or valine, which represent amino acids found at the corresponding sequence position in other 2-oxoglutarate-dependent enzymes. The mutant enzymes were expressed in E. coli and purified to homogeneity. The catalytic activities of [Thr290]FHT and [Ala290]FHT were still significant, albeit greatly reduced to 20 and 8%, respectively, in comparison to the wild-type enzyme, whereas the activity of [Val290]FHT was negligible (about 1%). Kinetic analyses of purified wild-type and mutant enzymes revealed the functional significance of Ser290 for 2-oxoglutarate-binding. The spatial configurations of the related Fe(II)-dependent isopenicillin N and deacetoxycephalosporin C synthases have been reported recently and provide the lead structures for the conformation of other dioxygenases. Circular dichroism spectroscopy was employed to compare the conformation of pure flavanone 3beta-hydroxylase with that of isopenicillin N synthase. A double minimum in the far ultraviolet region at 222 nm and 208-210 nm and a maximum at 191-193 nm which are characteristic for alpha-helical regions were observed, and the spectra of the two dioxygenases fully matched revealing their close structural relationship. Furthermore, the spectrum remained unchanged after addition of either ferrous ions, 2-oxoglutarate or both of these cofactors, ruling out a significant conformational change of the enzyme on cofactor-binding.


Subject(s)
Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Solanaceae/enzymology , Solanaceae/genetics , Amino Acid Sequence , Base Sequence , Catalytic Domain/genetics , Circular Dichroism , Conserved Sequence , DNA Primers/genetics , Escherichia coli/genetics , Kinetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Serine/chemistry
8.
FEBS Lett ; 448(1): 135-40, 1999 Apr 01.
Article in English | MEDLINE | ID: mdl-10217426

ABSTRACT

Acridone synthase II cDNA was cloned from irradiated cell suspension cultures of Ruta graveolens L. and expressed in Escherichia coli. The translated polypeptide of Mr 42,681 revealed a high degree of similarity to heterologous chalcone and stilbene synthases (70-75%), and the sequence was 94% identical to that of acridone synthase I cloned previously from elicited Ruta cells. Highly active recombinant acridone synthases I and II were purified to apparent homogeneity by a four-step purification protocol, and the affinities to N-methylanthraniloyl-CoA and malonyl-CoA were determined. The molecular mass of acridone synthase II was estimated from size exclusion chromatography on a Fractogel EMD BioSEC (S) column at about 45 kDa, as compared to a mass of 44 +/- 3 kDa found for the acridone synthase I on Superdex 75. Nevertheless, the sedimentation analysis by ultracentrifugation revealed molecular masses of 81 +/- 4 kDa for both acridone synthases. It is proposed, therefore, that the acridone synthases of Ruta graveolens are typical homodimeric plant polyketide synthases.


Subject(s)
Acyltransferases/metabolism , Plants/enzymology , Acyltransferases/genetics , Amino Acid Sequence , Cloning, Molecular , Dimerization , Isoenzymes , Molecular Sequence Data , Sequence Analysis, DNA
9.
Eur J Biochem ; 249(3): 748-57, 1997 Nov 01.
Article in English | MEDLINE | ID: mdl-9395322

ABSTRACT

Flavanone 3beta-hydroxylase, involved in the biosynthesis of flavonoids, catechins, and anthocyanidins, is a non-heme iron enzyme, dependent on Fe2+, molecular oxygen, 2-oxoglutarate, and ascorbate, the typical cofactors of the class of 2-oxoglutarate-dependent dioxygenases. Sequence alignment analysis of various 2-oxoglutarate-dependent dioxygenases and related enzymes revealed eight amino acid residues that seem to be strictly conserved within this group of enzymes. Among these residues, two histidines (His220 and His278) and one aspartic acid (Asp222) were identified as part of the putative iron-binding site and an arginine residue (Arg288) as part of the 2-oxoglutarate binding site, by site-directed mutagenesis and functional analysis of the mutated recombinant enzyme. The mutant genes were expressed in Escherichia coli to give soluble proteins whose molecular masses were in excellent agreement with the wild-type enzyme. Four out of nine mutant enzymes, [Gln78]FHT, [Gln121]FHT, [Gln264]FHT and [Gln266]FHT, were enzymatically active with activities reduced to 26-57%, implying that the mutated amino acid residues are not essential for catalysis. Replacement of His220 by glutamine and Asp222 by asparagine remarkably reduced the catalytic activity to about 0.15% and 0.4%, respectively. The [Gln220]FHT and [Asn222]FHT enzymes showed a slightly increased Km value with respect to iron binding, as compared to the wild-type enzyme. The most drastic effect on the reaction rate of flavanone 3beta-hydroxylase was achieved by mutating His278 to glutamine. The mutant had no detectable enzyme activity, indicating that His278 was essential for the catalytic reaction. The observed protection of purified enzyme from inactivation by diethylpyrocarbonate after the addition of cofactors provided further independent confirmation for the involvement of histidine residues in the active site. The substitution of Arg288 by lysine or glutamine induced a precipitous decrease in catalytic activity and a fivefold and 160-fold increase in the Michaelis constants for 2-oxoglutarate, respectively. In addition, the enzymatic activities of the latter two mutant enzymes showed a strong pH dependence in the weakly acidic as well as in the neutral pH range, unlike the wild-type enzyme. These results clearly indicate that Arg288 probably contributes to the specific binding of 2-oxoglutarate at the active site of the enzyme, most likely by providing a positive charge, properly located in order to interact with the delta-carboxyl function of 2-oxoglutarate. Furthermore, we conclude that His220, His278 and Asp222 constitute three of the possible ligands for iron binding in the active site of flavanone 3beta-hydroxylase.


Subject(s)
Mixed Function Oxygenases/chemistry , Solanaceae/enzymology , Adipates/metabolism , Binding Sites , Blotting, Western , Diethyl Pyrocarbonate/pharmacology , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Gene Expression , Hydrogen-Ion Concentration , Ketoglutaric Acids/metabolism , Kinetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/isolation & purification , Mixed Function Oxygenases/metabolism , Mutagenesis, Site-Directed , Oligodeoxyribonucleotides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...