Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14700, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926485

ABSTRACT

Identifying novel epigenetic biomarkers is a promising way to improve the clinical management of patients with breast cancer. Our study aimed to determine the methylation pattern of 25 tumor suppressor genes (TSG) and select the best methylation biomarker associated with clinicopathological features in the cohort of Slovak patients diagnosed with invasive ductal carcinoma (IDC). Overall, 166 formalin-fixed, paraffin-embedded (FFPE) tissues obtained from patients with IDC were included in the study. The methylation status of the promoter regions of 25 TSG was analyzed using semiquantitative methylation-specific MLPA (MS-MLPA). We identified CDH13 as the most frequently methylated gene in our cohort of patients. Further analysis by ddPCR confirmed an increased level of methylation in the promoter region of CDH13. A significant difference in CDH13 methylation levels was observed between IDC molecular subtypes LUM A versus HER2 (P = 0.0116) and HER2 versus TNBC (P = 0.0234). In addition, significantly higher methylation was detected in HER2+ versus HER2- tumors (P = 0.0004) and PR- versus PR+ tumors (P = 0.0421). Our results provide evidence that alteration in CDH13 methylation is associated with clinicopathological features in the cohort of Slovak patients with IDC. In addition, using ddPCR as a methylation-sensitive method represents a promising approach characterized by higher precision and technical simplicity to measure the methylation of target CpGs in CDH13 compared to other conventional methods such as MS-MLPA.


Subject(s)
Breast Neoplasms , Cadherins , Carcinoma, Ductal, Breast , DNA Methylation , Promoter Regions, Genetic , Humans , Cadherins/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Middle Aged , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/metabolism , Aged , Slovakia , Biomarkers, Tumor/genetics , Adult , Polymerase Chain Reaction/methods
2.
Neoplasma ; 71(2): 143-152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766854

ABSTRACT

Malignant melanoma is a skin tumor arising from melanocytes, occurring mostly in predisposed individuals. Melanomas are frequently present with copy number variations (CNVs), i.e., gains or losses of specific DNA regions that have provided immense potential for disease diagnosis and classification. The methodology of CNV detection has revolutionized in past decades, and current high throughput technologies enable us to analyze the entire spectrum of CNV alterations at the whole genome scale. Thus, identifying novel CNV biomarkers and evaluating their applicability in biomedicine are becoming increasingly important. The aim of this review was to summarize copy number changes occurring in malignant melanomas. We made an overview of specific genes and chromosomal locations affected in sporadic and familial melanoma and also of known germline alterations in melanoma-prone families. We summarized genomic regions aberrant in malignant melanoma and highlighted those frequently discussed in the literature, suggesting 7q, 11q, 12q, 9p, and 1q, but also others, as the most affected ones.


Subject(s)
Biomarkers, Tumor , DNA Copy Number Variations , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Biomarkers, Tumor/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
3.
Front Oncol ; 13: 1205791, 2023.
Article in English | MEDLINE | ID: mdl-37476382

ABSTRACT

Introduction: Colorectal cancer (CRC) can develop through several dysregulated molecular pathways, including the serrated pathway, characterized by CpG island methylator (CIMP) phenotype. Although the tumor tissue is a commonly tested material, sample types such as stool or plasma, bring a new, non-invasive approach. Several cancer-related methylated genes have been identified in CRC patients, including gene GRIA4, showing promising diagnostic potential. The aim of our study was to develop a sensitive droplet digital PCR (ddPCR) assay to examine GRIA4 hypermethylation status in CRC patients and evaluate its diagnostic potential in tissue and liquid biopsy samples. Methods: In total, 23 patients participated in this study, 7 patients with primary CRC and 16 patients with liver metastasis of clinically known CRC. We obtained tumor and non-tumor tissues (N=17), blood samples pre- and post-surgery (N=22), and blood of five volunteers without a personal cancer history. We have developed and optimized a ddPCR assay for GRIA4 hypermethylation detection, from tissue and plasma samples. Results: We detected significantly increased GRIA4 methylation in tumor tissues compared to their adjacent non-tumor tissue, p<0.0001. Receiver operating characteristic (ROC) analysis defined cutoff values to separate primary tumors and metastases from non-tumor colon/rectum, specifically 36.85% for primary tumors and 34.81% for metastases. All primary tumors were above this threshold. When comparing the methylation levels of metastatic vs. non-tumor tissue, a smaller increase was observed in liver metastasis versus colon tissue (3.6× gain; p=0.001), then in liver metastasis versus adjacent liver tissue (17.4× gain; p<0.0001). On average, GRIA4 hypermethylation in primary tumor plasma was 2.8-fold higher (p=0.39), and in metastatic plasma, 16.4-fold higher (p=0.0011) compared to healthy individuals. Hypermethylation in metastatic plasma was on average 5.9 times higher (p=0.051) than in primary tumor plasma. After tumor removal surgery, average hypermethylation decrease in plasma was 1.6× for primary (p=0.037) and 4.5× for metastatic patients (p=0.023). Discussion: Based on our data, it can be inferred that GRIA4 serves as a tissue specific biomarker for the colon/rectum tissue, thus is suitable for cancer classification. This biomarker showed the potential to be an attractive target for early non-invasive detection of metastases of clinically known CRC, although additional analysis has to be performed.

4.
Acta Virol ; 67(1): 3-12, 2023.
Article in English | MEDLINE | ID: mdl-36876506

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in air traffic is important in the prevention of the virus spreading from abroad. The gold standard for SARS-CoV-2 detection is RT-qPCR; however, for early and low viral load detection, a much more sensitive method, such as droplet digital PCR (ddPCR), is required. Our first step was to developed both, ddPCR and RT-qPCR methods, for sensitive SARS-CoV-2 detection. Analysis of ten swab/saliva samples of five Covid-19 patients in different stages of disease showed positivity in 6/10 samples with RT-qPCR and 9/10 with ddPCR. We also used our RT-qPCR method for SARS-CoV-2 detection without the need of RNA extraction, obtaining results in 90-120 minutes. We analyzed 116 self-collected saliva samples from passengers and airport staff arriving from abroad. All samples were negative by RT-qPCR, while 1 was positive, using ddPCR. Lastly, we developed ddPCR assays for SARS-CoV-2 variants identification (alpha, beta, gamma, delta/kappa) that are more economically advantageous when compared to NGS. Our findings demonstrated that saliva samples can be stored at ambient temperature, as we did not observe any significant difference between a fresh sample and the same sample after 24 hours (p = 0.23), hence, saliva collection is the optimal route for sampling airplane passengers. Our results also showed that droplet digital PCR is a more suitable method for detecting virus from saliva, compared to RT-qPCR. Keywords: COVID-19; RT-PCR; ddPCR; SARS-CoV-2; nasopharyngeal swab; saliva.


Subject(s)
Air Travel , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Sensitivity and Specificity , Polymerase Chain Reaction , RNA, Viral/genetics , Saliva/chemistry , Specimen Handling/methods
5.
Front Public Health ; 11: 1116636, 2023.
Article in English | MEDLINE | ID: mdl-36960362

ABSTRACT

Introduction: Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods: In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results: (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion: The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , RNA, Viral , Wastewater , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...