Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; : e14410, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810092

ABSTRACT

PURPOSE: The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD: A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS: Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION: The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.

2.
Int J Radiat Oncol Biol Phys ; 118(2): 565-573, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37660738

ABSTRACT

PURPOSE: Dose heterogeneity within a tumor target is likely responsible for the biologic effects and local tumor control from spatially fractionated radiation therapy (SFRT). This study used a commercially available GRID-pattern dose mudulated nonuniform radiation therapy (GRID) collimator to assess the interplan variability of heterogeneity dose metrics in patients with various bulky tumor sizes and depths. METHODS AND MATERIALS: The 3-dimensional heterogeneity metrics of 14 bulky tumors, ranging from 155 to 2161 cm3 in volume, 6 to 23 cm in equivalent diameter, and 3 to 13 cm in depth, and treated with GRID collimator-based SFRT were studied. A prescription dose of 15 Gy was given at the tumor center with 6 MV photons. The dose-volume histogram indices, dose heterogeneity parameters, and peak/valley dose ratios were derived; the equivalent uniform doses of cancer cells with various radiosensitivities in each plan were estimated. To account for the spatial fractionation, high dose core number density of the tumor target was defined and calculated. RESULTS: Among 14 plans, the dose-volume histogram indices D5, D10, D50, D90, and D95 (doses covering 5%, 10%, 50%, 90%, and 95% of the target volume) were found within 10% variation. The dose ratio of D10/D90 also showed a moderate consistency (range, 3.9-5.0; mean, 4.4). The equivalent uniform doses were consistent, ranging from 4.3 to 5.5 Gy, mean 4.6 Gy, for radiosensitive cancer cells and from 5.8 to 6.9 Gy, mean 6.2 Gy, for radioresistant cancer cells. The high dose core number density was within 20% among all plans. CONCLUSIONS: GRID collimator-based SFRT delivers a consistent heterogeneity dose distribution and high dose core density across bulky tumor plans. The interplan reproducibility and simplicity of GRID therapy may be useful for certain clinical indications and interinstitutional clinical trial design, and its heterogeneity metrics may help guide multileaf-collimator-based SFRT planning to achieve similar or further optimized dose distributions.


Subject(s)
Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Prospective Studies , Reproducibility of Results , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Dosage
3.
Curr Oncol Rep ; 25(12): 1483-1496, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979032

ABSTRACT

PURPOSE OF REVIEW: This review aims to summarize the current preclinical and clinical evidence of nontargeted immune effects of spatially fractionated radiation therapy (SFRT). We then highlight strategies to augment the immunomodulatory potential of SFRT in combination with immunotherapy (IT). RECENT FINDINGS: The response of cancer to IT is limited by primary and acquired immune resistance, and strategies are needed to prime the immune system to increase the efficacy of IT. Radiation therapy can induce immunologic effects and can potentially be used to synergize the effects of IT, although the optimal combination of radiation and IT is largely unknown. SFRT is a novel radiation technique that limits ablative doses to tumor subvolumes, and this highly heterogeneous dose deposition may increase the immune-rich infiltrate within the targeted tumor with enhanced antigen presentation and activated T cells in nonirradiated tumors. The understanding of nontargeted effects of SFRT can contribute to future translational strategies to combine SFRT and IT. Integration of SFRT and IT is an innovative approach to address immune resistance to IT with the overall goal of improving the therapeutic ratio of radiation therapy and increasing the efficacy of IT.


Subject(s)
Immunotherapy , Neoplasms , Humans , Immune System , Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...