Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914797

ABSTRACT

Staphylococcus aureus is one of the most common nosocomial biofilm-forming pathogens worldwide that has developed resistance mechanisms against majority of the antibiotics. Therefore, the search of novel antistaphylococcal agents with unexploited mechanisms of action, especially with antibiofilm activity, is of great interest. Seryl-tRNA synthetase is recognized as a promising drug target for the development of antibacterials. We have carried out molecular docking of compounds with antistaphycoccal activity, which were earlier found by us using phenotypic screening, into synthetic site of S. aureus SerRS and found seven hit compounds with low inhibitory activity. Further, we have performed search of S. aureus SerRS inhibitors among compounds which were previously tested by us for inhibitory activity toward S. aureus ThrRS, that belong to the same class of aminoacyl-tRNA synthetases. Among them six hits were identified. We have selected four compounds for antibacterial study and found that the most active compound 1-methyl-3-(1H-imidazol-1-methyl-2-yl)-5-nitro-1H-indazole has MIC values toward S. aureus multidrug-resistant clinical isolates ranging from 78.12 to 156.2 µg/ml. However, this compound precipitated during anti-biofilm study. Therefore, we used 3-[N'-(2-hydroxy-3-methoxybenzylidene)hydrazino]-6-methyl-4H-[1,2,4]triazin-5-one with better solubility (ClogS value = 2.9) among investigated compounds toward SerRS for anti-biofilm study. It was found that this compound has a significant inhibitory effect on the growth of planktonic and biofilm culture of S. aureus 25923 with MIC value of 32 µg ml-1. At the same time, this compound does not reveal antibacterial activity toward Esherichia coli ATCC 47076. Therefore, this compound can be proposed as effective antiseptic toward multidrug-resistant biofilm-forming S. aureus isolates.

2.
J Antibiot (Tokyo) ; 75(6): 321-332, 2022 06.
Article in English | MEDLINE | ID: mdl-35440771

ABSTRACT

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.


Subject(s)
COVID-19 , Staphylococcal Infections , Aminoacyltransferases , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms , Cysteine Endopeptidases , Humans , Microbial Sensitivity Tests , RNA, Viral/pharmacology , SARS-CoV-2 , Staphylococcus aureus
3.
Medchemcomm ; 10(12): 2161-2169, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-32206244

ABSTRACT

Effective treatment of tuberculosis is challenged by the rapid development of Mycobacterium tuberculosis (Mtb) multidrug resistance that presumably could be overcome with novel multi-target drugs. Aminoacyl-tRNA synthetases (AARSs) are an essential part of protein biosynthesis machinery and attractive targets for drug discovery. Here, we experimentally verify a hypothesis of simultaneous targeting of structurally related AARSs by a single inhibitor. We previously identified a new class of mycobacterial leucyl-tRNA synthetase inhibitors, N-benzylidene-N'-thiazol-2-yl-hydrazines. Molecular docking of a library of novel N-benzylidene-N'-thiazol-2-yl-hydrazine derivatives into active sites of M. tuberculosis LeuRS (MtbLeuRS) and MetRS (MtbMetRS) resulted in a panel of the best ranking compounds, which were then evaluated for enzymatic potency. Screening data revealed 11 compounds active against MtbLeuRS and 28 compounds active against MtbMetRS. The hit compounds display dual inhibitory potency as demonstrated by IC50 values for both enzymes. Compound 3 is active against Mtb H37Rv cells in in vitro bioassays.

4.
Bioorg Med Chem ; 24(5): 1023-31, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26822568

ABSTRACT

Tuberculosis is a serious infectious disease caused by human pathogen bacteria Mycobacterium tuberculosis. Bacterial drug resistance is a very significant medical problem nowadays and development of novel antibiotics with different mechanisms of action is an important goal of modern medical science. Leucyl-tRNA synthetase (LeuRS) has been recently clinically validated as antimicrobial target. Here we report the discovery of small-molecule inhibitors of M. tuberculosis LeuRS. Using receptor-based virtual screening we have identified six inhibitors of M. tuberculosis LeuRS from two different chemical classes. The most active compound 4-{[4-(4-Bromo-phenyl)-thiazol-2-yl]hydrazonomethyl}-2-methoxy-6-nitro-phenol (1) inhibits LeuRS with IC50 of 6µM. A series of derivatives has been synthesized and evaluated in vitro toward M. tuberculosis LeuRS. It was revealed that the most active compound 2,6-Dibromo-4-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol inhibits LeuRS with IC50 of 2.27µM. All active compounds were tested for antimicrobial effect against M. tuberculosis H37Rv. The compound 1 seems to have the best cell permeability and inhibits growth of pathogenic bacteria with IC50=10.01µM and IC90=13.53µM.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Tuberculosis/drug therapy , Amino Acid Sequence , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/metabolism , Models, Molecular , Molecular Sequence Data , Mycobacterium tuberculosis/chemistry , Nitrophenols/chemical synthesis , Nitrophenols/chemistry , Nitrophenols/pharmacology , Protein Structure, Tertiary , Sequence Alignment , Tuberculosis/microbiology
5.
Bioorg Med Chem ; 23(10): 2489-97, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25882527

ABSTRACT

Apoptosis signal-regulating kinase 1 (ASK1) plays important roles in the pathogenesis of type 1 and type 2 diabetes, autoimmune disorders, cancer and neurodegenerative diseases suggesting that small compounds inhibiting ASK1 could be used for the treatment of these pathologies. We have identified novel chemical class of ASK1 inhibitors, namely benzothiazol-2-yl-3-hydroxy-5-phenyl-1,5-dihydro-pyrrol-2-one, using molecular modeling techniques. It was found that the most active compound 1-(6-fluoro-benzothiazol-2-yl)-3-hydroxy-5-[3-(3-methyl-butoxy)-phenyl]-4-(2-methyl-2,3-dihydro-benzofuran-5-carbonyl)-1,5-dihydro-pyrrol-2-one (BPyO-34) inhibits ASK1 with IC50 of 0.52µM in vitro in kinase assay. The structure-activity relationships of 34 derivatives of benzothiazol-2-yl-3-hydroxy-5-phenyl-1,5-dihydro-pyrrol-2-one have been studied and binding mode of this chemical class has been proposed.


Subject(s)
MAP Kinase Kinase Kinase 5/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrroles/chemistry , Small Molecule Libraries/chemistry , Thiazoles/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites , Enzyme Assays , High-Throughput Screening Assays , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Immunologic Factors/chemical synthesis , Immunologic Factors/chemistry , MAP Kinase Kinase Kinase 5/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Pyrroles/chemical synthesis , Recombinant Proteins , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship , Thiazoles/chemical synthesis , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...