Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 4703, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29549308

ABSTRACT

Filamentous fungi colonize substrates by forming a mycelium. This network of hyphae can be used as a bio-based material. Here, we assessed the impact of environmental growth conditions and deletion of the hydrophobin gene sc3 on material properties of the mycelium of the mushroom forming fungus Schizophyllum commune. Thermogravimetric analysis showed that Δsc3 mycelium retained more water with increasing temperature when compared to the wild type. The Young's modulus (E) of the mycelium ranged between 438 and 913 MPa when the wild type strain was grown in the dark or in the light at low or high CO2 levels. This was accompanied by a maximum tensile strength (σ) of 5.1-9.6 MPa. In contrast, E and σ of the Δsc3 strain were 3-4- fold higher with values of 1237-2727 MPa and 15.6-40.4 MPa, respectively. These values correlated with mycelium density, while no differences in chemical composition of the mycelia were observed as shown by ATR-FTIR. Together, genetic modification and environmental growth conditions impact mechanical properties of the mycelium by affecting the density of the mycelium. As a result, mechanical properties of wild type mycelium were similar to those of natural materials, while those of Δsc3 were more similar to thermoplastics.


Subject(s)
Fungal Proteins/antagonists & inhibitors , Gene Deletion , Mycelium/physiology , Schizophyllum/physiology , Fungal Proteins/genetics , Physical Phenomena , Temperature , Tensile Strength , Thermogravimetry
2.
Plant Cell Environ ; 39(1): 136-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26147222

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant.


Subject(s)
Glomeromycota/physiology , Lolium/physiology , Medicago/physiology , Mycorrhizae/physiology , Soil Microbiology , Trifolium/physiology , Agriculture , Biomass , Glomeromycota/growth & development , Lolium/microbiology , Medicago/microbiology , Mycorrhizae/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Soil/chemistry , Trifolium/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...