Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366144

ABSTRACT

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Proteomics , Brain Stem , Cerebellum , Gene Expression Profiling
2.
JCI Insight ; 9(4)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206757

ABSTRACT

Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Down-Regulation , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer
3.
Am J Respir Crit Care Med ; 209(11): 1338-1350, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38259174

ABSTRACT

Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Homeostasis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/physiopathology , Child , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Male , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Aminophenols/therapeutic use , Aminophenols/pharmacology , Quinolones/therapeutic use , Quinolones/pharmacology , Indoles/therapeutic use , Indoles/pharmacology , Drug Combinations , Quinolines/therapeutic use , Quinolines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrroles/therapeutic use , Pyrroles/pharmacology , Nasal Mucosa/immunology , Pyridines/therapeutic use , Pyridines/pharmacology
4.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37815874

ABSTRACT

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , Immunologic Memory , COVID-19/prevention & control , Lymphoid Tissue , Vaccination , RNA, Messenger , Antibodies, Viral
5.
EMBO Rep ; 24(12): e57912, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37818799

ABSTRACT

The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adolescent , Humans , Aged , Leukocytes, Mononuclear , Epithelial Cells , Interferons , Immunity, Innate , Cytokines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
6.
Front Cell Dev Biol ; 11: 1091047, 2023.
Article in English | MEDLINE | ID: mdl-36875765

ABSTRACT

Feature identification and manual inspection is currently still an integral part of biological data analysis in single-cell sequencing. Features such as expressed genes and open chromatin status are selectively studied in specific contexts, cell states or experimental conditions. While conventional analysis methods construct a relatively static view on gene candidates, artificial neural networks have been used to model their interactions after hierarchical gene regulatory networks. However, it is challenging to identify consistent features in this modeling process due to the inherently stochastic nature of these methods. Therefore, we propose using ensembles of autoencoders and subsequent rank aggregation to extract consensus features in a less biased manner. Here, we performed sequencing data analyses of different modalities either independently or simultaneously as well as with other analysis tools. Our resVAE ensemble method can successfully complement and find additional unbiased biological insights with minimal data processing or feature selection steps while giving a measurement of confidence, especially for models using stochastic or approximation algorithms. In addition, our method can also work with overlapping clustering identity assignment suitable for transitionary cell types or cell fates in comparison to most conventional tools.

7.
Neuropathol Appl Neurobiol ; 49(1): e12856, 2023 02.
Article in English | MEDLINE | ID: mdl-36269599

ABSTRACT

BACKGROUND: DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours. RESULTS: Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h. CONCLUSIONS: In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.


Subject(s)
Brain Neoplasms , Nanopore Sequencing , Humans , DNA Methylation , Brain Neoplasms/pathology , Genome
8.
Front Cell Dev Biol ; 10: 954358, 2022.
Article in English | MEDLINE | ID: mdl-36187487

ABSTRACT

Cellular growth is a fundamental process of life and must be precisely controlled in multicellular organisms. Growth is crucially controlled by the number of functional ribosomes available in cells. The production of new ribosomes depends critically on the activity of RNA polymerase (RNAP) II in addition to the activity of RNAP I and III, which produce ribosomal RNAs. Indeed, the expression of both, ribosomal proteins and proteins required for ribosome assembly (ribosomal biogenesis factors), is considered rate-limiting for ribosome synthesis. Here, we used genetic screening to identify novel transcriptional regulators of cell growth genes by fusing promoters from a ribosomal protein gene (Rpl18) and from a ribosomal biogenesis factor (Fbl) with fluorescent protein genes (RFP, GFP) as reporters. Subsequently, both reporters were stably integrated into immortalized mouse fibroblasts, which were then transduced with a genome-wide sgRNA-CRISPR knockout library. Subsequently, cells with altered reporter activity were isolated by FACS and the causative sgRNAs were identified. Interestingly, we identified two novel regulators of growth genes. Firstly, the exon junction complex protein RBM8A controls transcript levels of the intronless reporters used here. By acute depletion of RBM8A protein using the auxin degron system combined with the genome-wide analysis of nascent transcription, we showed that RBM8A is an important global regulator of ribosomal protein transcripts. Secondly, we unexpectedly observed that the glycolytic enzyme aldolase A (ALDOA) regulates the expression of ribosomal biogenesis factors. Consistent with published observations that a fraction of this protein is located in the nucleus, this may be a mechanism linking transcription of growth genes to metabolic processes and possibly to metabolite availability.

9.
Nat Commun ; 13(1): 4484, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970849

ABSTRACT

Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.


Subject(s)
COVID-19 , DNA-Binding Proteins , Transcription Factors , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , Respiratory System , SARS-CoV-2 , Transcription Factors/genetics
10.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34101623

ABSTRACT

Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Adult , Aged , Antibodies, Viral/biosynthesis , BNT162 Vaccine , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunologic Memory , Immunosuppressive Agents/adverse effects , Lymphocyte Activation , Male , Middle Aged , Monitoring, Immunologic , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Transplantation Immunology
11.
Sci Rep ; 11(1): 11049, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040048

ABSTRACT

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific community's massive response has resulted in a flood of experiments, analyses, hypotheses, and publications, especially in the field of drug repurposing. However, many of the proposed therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and thus demonstrate the need for a singular source of COVID-19 related information from which a rational selection of drug repurposing candidates can be made. In this paper, we present the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a compilation of 10 separate disease maps and sources of experimental data focused on SARS-CoV-2/COVID-19 pathophysiology. By applying our systematic approach, we were able to predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results demonstrate that our graph can be used to not only explore the involved mechanistic pathways, but also to identify novel combinations of drug repurposing candidates.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning/methods , SARS-CoV-2/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Combined Modality Therapy , Computational Biology , Drug Synergism , Drug Therapy, Combination , GTP Phosphohydrolases/therapeutic use , Humans , Knowledge Bases , Nelfinavir/therapeutic use , Pandemics , Raloxifene Hydrochloride/therapeutic use
12.
Thorac Cardiovasc Surg ; 69(S 03): e10-e20, 2021 12.
Article in English | MEDLINE | ID: mdl-33607694

ABSTRACT

BACKGROUND: Protein-losing enteropathy (PLE) is a severe complication of the Fontan circulation. There is increasing discussion about whether lymphatic dysregulation is involved as pathomechanism of PLE. This investigation focuses on the interplay between alteration of lymphatic cells and immunologic pathway alterations. METHODS: Micro-ribonucleic acid (miRNA) expression profiling was performed in 49 patients (n = 10 Fontan patients with PLE, n = 30 Fontan patients without PLE, and n = 9 patients with dextro-transposition of the great arteries (dTGA). miRNA pathway analysis was performed to identify significantly enriched pathways. To determine lymphocyte populations and subtypes multiparameter flow cytometry was used. RESULTS: miRNAs pathway analysis of Fontan patients with PLE revealed 20 significantly changed networks of which four of the ten largest were associated with immunologic processes. This finding is supported by significant T cell deficiency with decreased CD4+ count (p = 0.0002), altered CD4 +/CD8+ ratio, and significantly modified CD4+ (p < 0.0001) and CD8+ (p = 0.0002) T cell differentiation toward effector and terminal differentiated T cells in Fontan patients with PLE. Analyses of CD4+ T cell subsets demonstrated significantly increased frequencies of CD4+ CD25+ CD127- regulatory T cells (Treg) in Fontan patients with PLE (p = 0.0011). CONCLUSION: PLE in Fontan patients is associated with severe lymphopenia, T cell deficiency, significant alterations of T cell differentiation, and increased Treg frequency reflecting an immune status of chronic inflammation and shortened protection against pathogens and autoimmunity. These cellular alterations seemed to be dysregulated by several miRNA controlled immunological pathways.


Subject(s)
Cell Differentiation , Fontan Procedure/adverse effects , Heart Defects, Congenital/surgery , Lymphopenia/immunology , Protein-Losing Enteropathies/immunology , T-Lymphocyte Subsets/immunology , Adolescent , Animals , Autoimmunity , Case-Control Studies , Child , Child, Preschool , Databases, Factual , Female , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunophenotyping , Infant , Lymphopenia/diagnosis , Lymphopenia/genetics , Lymphopenia/microbiology , Male , Mice , MicroRNAs/genetics , Phenotype , Protein-Losing Enteropathies/diagnosis , Protein-Losing Enteropathies/genetics , Transcriptome , Treatment Outcome , Young Adult
13.
Gastroenterology ; 160(4): 1330-1344.e11, 2021 03.
Article in English | MEDLINE | ID: mdl-33212097

ABSTRACT

BACKGROUND & AIMS: Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS: We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS: We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS: Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.


Subject(s)
Cell Nucleus/metabolism , Pancreas, Exocrine/cytology , Adolescent , Adult , Age Factors , Aged , Animals , Cell Fractionation , Child , Child, Preschool , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Middle Aged , Models, Animal , Pancreas, Exocrine/growth & development , Pancreas, Exocrine/metabolism , RNA-Seq , Single-Cell Analysis/methods , Swine , Young Adult
14.
J Clin Invest ; 130(11): 5703-5720, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32721946

ABSTRACT

Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.


Subject(s)
Arginase/metabolism , Gastrointestinal Microbiome , Hyperargininemia , Inflammatory Bowel Diseases , Metabolome , Animals , Arginase/genetics , Arginine/genetics , Arginine/metabolism , Endothelial Cells/enzymology , Endothelial Cells/pathology , Hematopoietic Stem Cells/enzymology , Hematopoietic Stem Cells/pathology , Hyperargininemia/genetics , Hyperargininemia/metabolism , Hyperargininemia/microbiology , Hyperargininemia/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Mice , Mice, Knockout
15.
EMBO J ; 39(17): e103209, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32692442

ABSTRACT

Invasion, metastasis and therapy resistance are the major cause of cancer-associated deaths, and the EMT-inducing transcription factor ZEB1 is a crucial stimulator of these processes. While work on ZEB1 has mainly focused on its role as a transcriptional repressor, it can also act as a transcriptional activator. To further understand these two modes of action, we performed a genome-wide ZEB1 binding study in triple-negative breast cancer cells. We identified ZEB1 as a novel interactor of the AP-1 factors FOSL1 and JUN and show that, together with the Hippo pathway effector YAP, they form a transactivation complex, predominantly activating tumour-promoting genes, thereby synergising with its function as a repressor of epithelial genes. High expression of ZEB1, YAP, FOSL1 and JUN marks the aggressive claudin-low subtype of breast cancer, indicating the translational relevance of our findings. Thus, our results link critical tumour-promoting transcription factors: ZEB1, AP-1 and Hippo pathway factors. Disturbing their molecular interaction may provide a promising treatment option for aggressive cancer types.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Genome, Human , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor AP-1/genetics , Transcription Factors/genetics , YAP-Signaling Proteins , Zinc Finger E-box-Binding Homeobox 1/genetics
16.
Nat Immunol ; 20(4): 514, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30846879

ABSTRACT

In the version of this article initially published, a portion of the Acknowledgements section ("the Clinical Research Group CEDER of the German Research Council (DFG)") was incorrect. The correct statement is as follows: "...the Collaborative Research Center TRR241 of the German Research Council (DFG)...". The error has been corrected in the HTML and PDF version of the article.

17.
Nat Immunol ; 20(3): 288-300, 2019 03.
Article in English | MEDLINE | ID: mdl-30692620

ABSTRACT

Although tissue-resident memory T cells (TRM cells) have been shown to regulate host protection in infectious disorders, their function in inflammatory bowel disease (IBD) remains to be investigated. Here we characterized TRM cells in human IBD and in experimental models of intestinal inflammation. Pro-inflammatory TRM cells accumulated in the mucosa of patients with IBD, and the presence of CD4+CD69+CD103+ TRM cells was predictive of the development of flares. In vivo, functional impairment of TRM cells in mice with double knockout of the TRM-cell-associated transcription factors Hobit and Blimp-1 attenuated disease in several models of colitis, due to impaired cross-talk between the adaptive and innate immune system. Finally, depletion of TRM cells led to a suppression of colitis activity. Together, our data demonstrate a central role for TRM cells in the pathogenesis of chronic intestinal inflammation and suggest that these cells could be targets for future therapeutic approaches in IBD.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colitis/immunology , Immunologic Memory/immunology , Positive Regulatory Domain I-Binding Factor 1/immunology , Transcription Factors/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chronic Disease , Colitis/genetics , Colitis/metabolism , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Humans , Immunologic Memory/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Positive Regulatory Domain I-Binding Factor 1/deficiency , Positive Regulatory Domain I-Binding Factor 1/genetics , Transcription Factors/deficiency , Transcription Factors/genetics
18.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29743358

ABSTRACT

The cellular protein SPOC1 (survival time-associated PHD [plant homeodomain] finger protein in ovarian cancer 1) acts as a regulator of chromatin structure and the DNA damage response. It binds H3K4me2/3-containing chromatin and promotes DNA condensation by recruiting corepressors such as KAP-1 and H3K9 methyltransferases. Previous studies identified SPOC1 as a restriction factor against human adenovirus (HAdV) infection that is antagonized by E1B-55K/E4-orf6-dependent proteasomal degradation. Here, we demonstrate that, in contrast to HAdV-infected cells, SPOC1 is transiently upregulated during the early phase of human cytomegalovirus (HCMV) replication. We show that the expression of immediate early protein 1 (IE1) is sufficient and necessary to induce SPOC1. Additionally, we discovered that during later stages of infection, SPOC1 is downregulated in a glycogen synthase kinase 3ß (GSK-3ß)-dependent manner. We provide evidence that SPOC1 overexpression severely impairs HCMV replication by repressing the initiation of viral immediate early (IE) gene expression. Consistently, we observed that SPOC1-depleted primary human fibroblasts displayed an augmented initiation of viral IE gene expression. This occurs in a multiplicity of infection (MOI)-dependent manner, a defining hallmark of intrinsic immunity. Interestingly, repression requires the presence of high SPOC1 levels at the start of infection, while later upregulation had no negative impact, suggesting distinct temporal roles of SPOC1 during the HCMV replicative cycle. Mechanistically, we observed a highly specific association of SPOC1 with the major immediate early promoter (MIEP), strongly suggesting that SPOC1 inhibits HCMV replication by MIEP binding and the subsequent recruitment of heterochromatin-building factors. Thus, our data add SPOC1 as a novel factor to the endowment of a host cell to restrict cytomegalovirus infections.IMPORTANCE Accumulating evidence indicates that during millennia of coevolution, host cells have developed a sophisticated compilation of cellular factors to restrict cytomegalovirus infections. Defining this equipment is important to understand cellular barriers against viral infection and to develop strategies to utilize these factors for antiviral approaches. So far, constituents of PML nuclear bodies and interferon gamma-inducible protein 16 (IFI16) were known to mediate intrinsic immunity against HCMV. In this study, we identify the chromatin modulator SPOC1 as a novel restriction factor against HCMV. We show that preexisting high SPOC1 protein levels mediate a silencing of HCMV gene expression via a specific association with an important viral cis-regulatory element, the major immediate early promoter. Since SPOC1 expression varies between cell types, this factor may play an important role in tissue-specific defense against HCMV.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , DNA-Binding Proteins/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Host-Pathogen Interactions , Immediate-Early Proteins/metabolism , Transcription Factors/metabolism , Virus Replication , Chromatin/chemistry , Chromatin/genetics , Cytomegalovirus Infections/metabolism , DNA-Binding Proteins/genetics , Glycogen Synthase Kinase 3 beta/genetics , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Promoter Regions, Genetic , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...