Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Proc Natl Acad Sci U S A ; 121(11): e2309841121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442151

ABSTRACT

The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.


Subject(s)
ATP-Binding Cassette Transporters , Degrons , Herpesviridae , Antigen Presentation , Cytomegalovirus , Endoplasmic Reticulum-Associated Degradation , Membrane Transport Proteins , Peptides , Ubiquitin-Protein Ligases/genetics , Herpesviridae/physiology
2.
J Mol Diagn ; 26(6): 520-529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522839

ABSTRACT

This study aims to identify RNA biomarkers distinguishing neuromyelitis optica (NMO) from relapsing-remitting multiple sclerosis (RRMS) and explore potential therapeutic applications leveraging machine learning (ML). An ensemble approach was developed using differential gene expression analysis and competitive ML methods, interrogating total RNA-sequencing data sets from peripheral whole blood of treatment-naïve patients with RRMS and NMO and healthy individuals. Pathway analysis of candidate biomarkers informed the biological context of disease, transcription factor activity, and small-molecule therapeutic potential. ML models differentiated between patients with NMO and RRMS, with the performance of certain models exceeding 90% accuracy. RNA biomarkers driving model performance were associated with ribosomal dysfunction and viral infection. Regulatory networks of kinases and transcription factors identified biological associations and identified potential therapeutic targets. Small-molecule candidates capable of reversing perturbed gene expression were uncovered. Mitoxantrone and vorinostat-two identified small molecules with previously reported use in patients with NMO and experimental autoimmune encephalomyelitis-reinforced discovered expression signatures and highlighted the potential to identify new therapeutic candidates. Putative RNA biomarkers were identified that accurately distinguish NMO from RRMS and healthy individuals. The application of multivariate approaches in analysis of RNA-sequencing data further enhances the discovery of unique RNA biomarkers, accelerating the development of new methods for disease detection, monitoring, and therapeutics. Integrating biological understanding further enhances detection of disease-specific signatures and possible therapeutic targets.


Subject(s)
Biomarkers , Machine Learning , Neuromyelitis Optica , Sequence Analysis, RNA , Neuromyelitis Optica/genetics , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/drug therapy , Humans , Female , Biomarkers/blood , Sequence Analysis, RNA/methods , Male , Mitoxantrone/therapeutic use , Adult , Diagnosis, Differential , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Gene Expression Profiling/methods , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/diagnosis , Multiple Sclerosis/blood
3.
Curr Issues Mol Biol ; 46(2): 1259-1280, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392198

ABSTRACT

The aim of the study was to determine differences in the proteome and peptidome and zinc concentrations in the serum and tissues of chickens supplemented with a multi-strain probiotic and/or zinc glycine chelate in ovo. A total of 1400 fertilized broiler eggs (Ross × Ross 708) were divided into four groups: a control and experimental groups injected with a multi-strain probiotic, with zinc glycine chelate, and with the multi-strain probiotic and zinc glycine chelate. The proteome and peptidome were analyzed using SDS-PAGE and MALDI-TOF MS, and the zinc concentration was determined by flame atomic absorption spectrometry. We showed that in ovo supplementation with zinc glycine chelate increased the Zn concentration in the serum and yolk sac at 12 h post-hatch. The results of SDS-PAGE and western blot confirmed the presence of Cu/Zn SOD in the liver and in the small and large intestines at 12 h and at 7 days after hatching in all groups. Analysis of the MALDI-TOF MS spectra of chicken tissues showed in all experimental groups the expression of proteins and peptides that regulate immune response, metabolic processes, growth, development, and reproduction.

4.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397849

ABSTRACT

Despite the many beneficial properties of legume plants, their use in diets for poultry is limited by the presence of antinutritional factors. The aim of the study was to determine the activity of DT-diaphorase, ethoxycoumarin O-deethylase, and catalase, and the concentration of malondialdehyde in liver tissue, as well as the activity of SOD and CAT in the serum of Hy-line Brown hens fed a diet supplemented with various doses of Lupinus angustifolius seeds. The results indicate that the use of large amounts of lupin in the diet resulted in an increase in MDA concentration in the liver and the lipid vacuolization of hepatocytes. A significant increase in DTD activity was observed in chickens receiving 15% lupin. Regardless of lupin dose, no increase in SOD activity was observed in chicken serum after 33 days of the experiment. From the 66th day of the experiment, an increase in catalase activity in the serum of laying hens was observed, while low activity of this enzyme was found in the liver. It can be concluded that the short-term use of lupin in the diet of laying hens does not affect the activity of antioxidant enzymes and, therefore, does not affect the oxidative-antioxidant balance of their body.

5.
Psychopharmacology (Berl) ; 241(5): 925-945, 2024 May.
Article in English | MEDLINE | ID: mdl-38156998

ABSTRACT

RATIONALE: The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS: Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION: The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.


Subject(s)
Bifidobacterium longum , Lacticaseibacillus rhamnosus , Mice , Animals , Proteome , Brain , Mammals
6.
Antioxidants (Basel) ; 12(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38001758

ABSTRACT

The aim of this study was to determine the effect of in ovo co-supplementation of chicken embryos with a multi-strain probiotic containing effective microorganisms and zinc glycine chelate on total antioxidant capacity; concentrations of sulfhydryl groups, bityrosine bridges, formylkynurenines, hydroperoxides, proteins, corticosterone, pro- and anti-inflammatory cytokines and heat shock proteins; and the activity of catalase and superoxide dismutase in the serum, yolk sac and tissues of broiler chickens at 12 h and at 7 days after hatching. The results indicate high SOD activity in the small and large intestines of chicks at 12 h post-hatch in the groups receiving the multi-strain probiotic and in the small intestine and yolk sac of birds receiving the multi-strain probiotic and Zn-Gly chelate. High concentrations of TNF-α and IFN-γ in the yolk sac and serum after in ovo administration of Zn-Gly chelate were observed 12 h after hatching. The use of a probiotic and a probiotic with Zn-Gly chelate increased the total antioxidant capacity in the tissues of chickens. It can be concluded that in ovo administration of a multi-strain probiotic and Zn-Gly chelate can maintain the oxidant/antioxidant balance in chickens and increase the defense capacity against oxidative stress.

7.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808699

ABSTRACT

The transporter associated with antigen processing (TAP) is a key player in the MHC class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 (BoHV-1) impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and promotes its proteasomal degradation. How UL49.5 promotes TAP degradation is unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal in human cells. We propose that the C-terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the CRL2 E3 in ER-associated degradation.

8.
Arch Anim Nutr ; 77(3): 187-204, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37222576

ABSTRACT

The current study aimed to investigate the effect of supplementing an emulsifier, xylanase or a combination of both on the growth performance, digestibility of nutrients, microflora activity and intestinal morphology in broiler chickens fed triticale-based diets. A total of 480 one-day-old male Ross 308 broiler chicks were randomly assigned to four dietary treatments: control (CON), control with an added emulsifier (EMU), control with added xylanase (ENZ) and control with emulsifier and xylanase (EMU+ENZ). Xylanase supplemented groups had diminished feed intake (FI) and enhanced body weight gain (BWG) only within the starter period (p ≤ 0.05), while the feed conversion ratio (FCR) in the ENZ and ENZ+EMU groups was lower than CON during the whole experiment period. There was significant ENZ and EMU interaction in apparent metabolisable energy corrected to N equilibrium (AMEN) as well as NDF and DM retention. The viscosity of ileum digesta was the lowest in groups with enzyme addition. Interactions show that caecal galactosidase-α activity was higher in the CON group compared to EMU supplementation, but similar to ENZ and EMU+ENZ (p < 0.05). Activity of glucosidase-α was higher in the CON group related to inclusion of EMU or ENZ alone (p < 0.05) but did not differ from the combined supplementation of EMU+ENZ, whereas the glucosidase-ß activity was higher in the CON group compared to all supplemented diets (p < 0.05). Caecal C2 concentration was greater in the CON group than supplemented diets (p < 0.05). The expression of FATP1, PEPT1 and SGLT1 in the ileum was downregulated after emulsifier addition (p ≤ 0.05). The addition of emulsifier and xylanase indicates a mutual effect on broiler chickens' performance and nutrient digestibility in triticale diets with palm oil during the first nutritional period. Additionally, concomitantly additives usage influenced intestinal microbiome activity, as well.


Subject(s)
Diet , Triticale , Animals , Male , Diet/veterinary , Chickens , Endo-1,4-beta Xylanases/metabolism , Animal Feed/analysis , Dietary Supplements , Glucosidases/metabolism , Glucosidases/pharmacology , Digestion , Animal Nutritional Physiological Phenomena
9.
J Vis Exp ; (195)2023 05 05.
Article in English | MEDLINE | ID: mdl-37212587

ABSTRACT

The vast majority of cellular processes require a continuous supply of energy, the most common carrier of which is the ATP molecule. Eukaryotic cells produce most of their ATP in the mitochondria by oxidative phosphorylation. Mitochondria are unique organelles because they have their own genome that is replicated and passed on to the next generation of cells. In contrast to the nuclear genome, there are multiple copies of the mitochondrial genome in the cell. The detailed study of the mechanisms responsible for the replication, repair, and maintenance of the mitochondrial genome is essential for understanding the proper functioning of mitochondria and whole cells under both normal and disease conditions. Here, a method that allows the high-throughput quantification of the synthesis and distribution of mitochondrial DNA (mtDNA) in human cells cultured in vitro is presented. This approach is based on the immunofluorescence detection of actively synthesized DNA molecules labeled by 5-bromo-2'-deoxyuridine (BrdU) incorporation and the concurrent detection of all the mtDNA molecules with anti-DNA antibodies. Additionally, the mitochondria are visualized with specific dyes or antibodies. The culturing of cells in a multi-well format and the utilization of an automated fluorescence microscope make it easier to study the dynamics of mtDNA and the morphology of mitochondria under a variety of experimental conditions in a relatively short time.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Bromodeoxyuridine/metabolism , Adenosine Triphosphate/metabolism , DNA Replication
10.
Poult Sci ; 102(1): 102268, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36402039

ABSTRACT

The aim of this study was to determine the effect of emulsifier and multicarbohydrase enzyme supplementation on performance, nutrient utilization, and apparent metabolizable energy-nitrogen (AMEN) value of broiler diets containing rapeseed meal (RSM) as well as their influence on the gut morphological structures, excretion of total and free sialic acid, and cecum concentration of short-chain fatty acids (SCFAs) in broiler chickens. A total of 384 male broiler chicks were assigned to four dietary treatments. The diet of the control treatment (CON) consisted of soybean, maize, and RSM (5% in starter, 7% in grower, 15% in finisher) with soybean and palm oils. The diets used for the experimental treatments were the control diet supplemented with an emulsifier (EMU), enzyme (ENZ), or both (EMU + ENZ). The duodenum (n = 10/treatment) and ileum (n = 10/treatment) digesta samples were assessed to determine nutrient digestibility: crude protein (CP), ether extract (EE), starch, Ca. Throughout the experimental period, EMU + ENZ treatment indicated the lowest total average feed intake and feed conversion ratio, with the highest average weight gain among the studied treatments (P < 0.05). The EMU + ENZ treatment also resulted in higher (P < 0.05): apparent prececal digestibility (APD) of CP, total tract neutral detergent fibre (NDF) degradation, apparent total tract digestibility (ATTD) of EE, villus height to crypt depth ratio (P < 0.1). The highest APD of EE was noted in the EMU treatment (P < 0.05). No significant differences were found in the AMEN values of the diets. A greater jejunum villi surface area was found in groups supplemented by enzyme compared to CON (P < 0.05). The EMU + ENZ treatment presented lower sialic acid excretion in the ileum and concentration of cecum SCFAs compared to the CON treatment (P < 0.05). The obtained results indicate that simultaneous usage of additives had beneficial effect on production parameters, nutrient digestibility, NDF degradation, as well as gut mucosa morphology. Based on the SCFAs concentration results, separate or simultaneous addition of emulsifier or/and enzyme did not provoke excessive fermentation activity of cecal bacteria.


Subject(s)
Brassica napus , Brassica rapa , Animals , Male , Chickens/metabolism , Animal Feed/analysis , Digestion , Diet/veterinary , Dietary Supplements , Nutrients , Sialic Acids/metabolism , Sialic Acids/pharmacology , Animal Nutritional Physiological Phenomena
11.
Wiley Interdiscip Rev RNA ; 13(3): e1690, 2022 05.
Article in English | MEDLINE | ID: mdl-34498404

ABSTRACT

Mitochondria play a pivotal role in numerous cellular processes. One of them is regulation of the innate immune pathway. In this instance, mitochondria function in two different aspects of regulatory mechanisms. First, mitochondria are part of the antiviral signaling cascade that is triggered in the cytoplasm and transmitted to effector proteins through mitochondria-localized proteins. Second, mitochondria can become an endogenous source of innate immune stimuli. Under some pathophysiological conditions, mitochondria release to the cytoplasm immunogenic factors, such as mitochondrial nucleic acids. Here, we focus on immunogenic mitochondrial double-stranded RNA (mt-dsRNA) and its origin and metabolism. We discuss factors that are responsible for regulating mt-dsRNA and its escape from mitochondria, emphasizing the contribution of polynucleotide phosphorylase (PNPase, PNPT1). Finally, we review current knowledge of the role of PNPase in human health and disease. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Subject(s)
Polyribonucleotide Nucleotidyltransferase , RNA, Double-Stranded , Exoribonucleases/metabolism , Humans , Immune System/metabolism , Immunity, Innate , Mitochondria/metabolism , Polyribonucleotide Nucleotidyltransferase/genetics , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA, Double-Stranded/metabolism , RNA, Mitochondrial/metabolism
12.
BMJ Health Care Inform ; 28(1)2021 Sep.
Article in English | MEDLINE | ID: mdl-34580088

ABSTRACT

INTRODUCTION: The SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the USA, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities. METHODS: We combined county-level COVID-19 testing data, COVID-19 vaccination rates and SDOH information in Tennessee. Between February and May 2021, we trained machine learning models on a semimonthly basis using these datasets to predict COVID-19 incidence in Tennessee counties. We then analyzed SDOH data features at each time point to rank the impact of each feature on model performance. RESULTS: Our results indicate that COVID-19 vaccination rates play a crucial role in determining future COVID-19 disease risk. Beginning in mid-March 2021, higher vaccination rates significantly correlated with lower COVID-19 case growth predictions. Further, as the relative importance of COVID-19 vaccination data features grew, demographic SDOH features such as age, race and ethnicity decreased while the impact of socioeconomic and environmental factors, including access to healthcare and transportation, increased. CONCLUSION: Incorporating a data framework to track the evolving patterns of community-level SDOH risk factors could provide policy-makers with additional data resources to improve health equity and resilience to future public health emergencies.


Subject(s)
COVID-19 , Social Determinants of Health , Vaccination/statistics & numerical data , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines/administration & dosage , Humans , Machine Learning , Models, Theoretical , Tennessee/epidemiology
13.
Environ Chem Lett ; 19(6): 3967-3972, 2021.
Article in English | MEDLINE | ID: mdl-34456659

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has raised the need of versatile means for virus decontamination. Millimeter waves are used in biochemical research in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy. However, their efficiency in object decontamination for viruses has not been tested yet. Here we report the high efficiency of 95 GHz waves in killing both coronavirus 229E and poliovirus. An exposure of 2 s to 95 GHz waves reduced the titer of these viruses by 99.98% and 99.375%, respectively, and formed holes in the envelope of 229E virions as detected by scanning electron microscopy (SEM) analysis. The ability of 95 GHz waves to reduce the coronavirus titer to a range of limited infective dose of SARS-CoV-2 for humans and animal models along with precise focusing capabilities for these waves suggest 95 GHz waves as an effective way to decontaminate objects.

14.
BMJ Health Care Inform ; 28(1)2021 Aug.
Article in English | MEDLINE | ID: mdl-34385289

ABSTRACT

INTRODUCTION: The SARS-CoV-2 (COVID-19) pandemic has exposed the need to understand the risk drivers that contribute to uneven morbidity and mortality in US communities. Addressing the community-specific social determinants of health (SDOH) that correlate with spread of SARS-CoV-2 provides an opportunity for targeted public health intervention to promote greater resilience to viral respiratory infections. METHODS: Our work combined publicly available COVID-19 statistics with county-level SDOH information. Machine learning models were trained to predict COVID-19 case growth and understand the social, physical and environmental risk factors associated with higher rates of SARS-CoV-2 infection in Tennessee and Georgia counties. Model accuracy was assessed comparing predicted case counts to actual positive case counts in each county. RESULTS: The predictive models achieved a mean R2 of 0.998 in both states with accuracy above 90% for all time points examined. Using these models, we tracked the importance of SDOH data features over time to uncover the specific racial demographic characteristics strongly associated with COVID-19 incidence in Tennessee and Georgia counties. Our results point to dynamic racial trends in both states over time and varying, localized patterns of risk among counties within the same state. For example, we find that African American and Asian racial demographics present comparable, and contrasting, patterns of risk depending on locality. CONCLUSION: The dichotomy of demographic trends presented here emphasizes the importance of understanding the unique factors that influence COVID-19 incidence. Identifying these specific risk factors tied to COVID-19 case growth can help stakeholders target regional interventions to mitigate the burden of future outbreaks.


Subject(s)
COVID-19 , Health Status Disparities , Social Determinants of Health , COVID-19/epidemiology , COVID-19/ethnology , Georgia/epidemiology , Humans , Models, Theoretical , Risk Factors , Tennessee/epidemiology
15.
J Mol Biol ; 433(18): 167125, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34224750

ABSTRACT

APE1 is a multifunctional protein which plays a central role in the maintenance of nuclear and mitochondrial genomes repairing DNA lesions caused by oxidative and alkylating agents. In addition, it works as a redox signaling protein regulating gene expression by interacting with many transcriptional factors. Apart from these canonical activities, recent studies have shown that APE1 is also enzymatically active on RNA molecules. The present study unveils for the first time a new role of the mitochondrial form of APE1 protein in the metabolism of RNA in mitochondria. Our data demonstrate that APE1 is associated with mitochondrial messenger RNA and exerts endoribonuclease activity on abasic sites. Loss of APE1 results in the accumulation of damaged mitochondrial mRNA species, determining impairment in protein translation and reduced expression of mitochondrial-encoded proteins, finally leading to less efficient mitochondrial respiration. Altogether, our data demonstrate that APE1 plays an active role in the degradation of the mitochondrial mRNA and has a profound impact on mitochondrial well-being.


Subject(s)
Cell Nucleus/metabolism , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , RNA, Messenger/metabolism , RNA, Mitochondrial/metabolism , Cell Nucleus/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , HeLa Cells , Humans , Mitochondria/genetics , Oxidative Stress , RNA, Messenger/genetics , RNA, Mitochondrial/genetics
16.
Preprint in English | medRxiv | ID: ppmedrxiv-21260814

ABSTRACT

The SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the United States, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities. We combined county-level COVID-19 testing data, COVID-19 vaccination rates, and SDOH information in Tennessee. Between February-May 2021, we trained machine learning models on a semi-monthly basis using these datasets to predict COVID-19 incidence in Tennessee counties. We then analyzed SDOH data features at each time point to rank the impact of each feature on model performance. Our results indicate that COVID-19 vaccination rates play a crucial role in determining future COVID-19 disease risk. Beginning in mid-March 2021, higher vaccination rates significantly correlated with lower COVID-19 case growth predictions. Further, as the relative importance of COVID-19 vaccination data features grew, demographic SDOH features such as age, race, and ethnicity decreased while the impact of socioeconomic and environmental factors, including access to healthcare and transportation, increased. Incorporating a data framework to track the evolving patterns of community-level SDOH risk factors could provide policymakers with additional data resources to improve health equity and resilience to future public health emergencies.

17.
Animals (Basel) ; 11(3)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800098

ABSTRACT

The aim of the study was to analyze the biofilm-production capacity of 87 coagulase-negative Staphylococcus strains (CoNS) isolated from broiler chickens and to determine the occurrence of biofilm-associated genes. The biofilm production capacity of staphylococci was assessed using the microtiter plate method (MTP), and the frequency of genes was determined by PCR. The ability to form a biofilm in vitro was shown in 79.3% of examined strains. Strong biofilm capacity was demonstrated in 26.4% of strains, moderate capacity in 25.3%, weak capacity in 27.6%, and a complete lack of biofilm production capacity in 20.7% of strains. The icaAB gene responsible for the production of extracellular polysaccharide adhesins was detected in 6.9% of strains. The other four genes, i.e., bap (encoding biofilm-associated protein), atlE (encoding cell surface protein exhibiting vitronectin-binding activity), fbe (encoding fibrinogen-binding protein), and eno (encoding laminin-binding protein) were detected in 5.7%, 19.5%, 8%, and 70.1% of strains, respectively. Demonstration of genes that play a role in bacterial biofilm formation may serve as a genetic basis to distinguish between symbiotic and potentially invasive coagulase-negative staphylococcal strains.

18.
medRxiv ; 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33619499

ABSTRACT

The COVID-19 pandemic has exposed the need to understand the unique risk drivers that contribute to uneven morbidity and mortality in US communities. Addressing the community-specific social determinants of health that correlate with spread of SARS-CoV-2 provides an opportunity for targeted public health intervention to promote greater resilience to viral respiratory infections in the future. Our work combined publicly available COVID-19 statistics with county-level social determinants of health information. Machine learning models were trained to predict COVID-19 case growth and understand the unique social, physical and environmental risk factors associated with higher rates of SARS-CoV-2 infection in Tennessee and Georgia counties. Model accuracy was assessed comparing predicted case counts to actual positive case counts in each county. The predictive models achieved a mean r-squared (R2) of 0.998 in both states with accuracy above 90% for all time points examined. Using these models, we tracked the social determinants of health, with a specific focus on demographics, that were strongly associated with COVID-19 case growth in Tennessee and Georgia counties. The demographic results point to dynamic racial trends in both states over time and varying, localized patterns of risk among counties within the same state. Identifying the specific risk factors tied to COVID-19 case growth can assist public health officials and policymakers target regional interventions to mitigate the burden of future outbreaks and minimize long-term consequences including emergence or exacerbation of chronic diseases that are a direct consequence of infection.

19.
Preprint in English | medRxiv | ID: ppmedrxiv-21251106

ABSTRACT

The COVID-19 pandemic has exposed the need to understand the unique risk drivers that contribute to uneven morbidity and mortality in US communities. Addressing the community-specific social determinants of health that correlate with spread of SARS-CoV-2 provides an opportunity for targeted public health intervention to promote greater resilience to viral respiratory infections in the future. Our work combined publicly available COVID-19 statistics with county-level social determinants of health information. Machine learning models were trained to predict COVID-19 case growth and understand the unique social, physical and environmental risk factors associated with higher rates of SARS-CoV-2 infection in Tennessee and Georgia counties. Model accuracy was assessed comparing predicted case counts to actual positive case counts in each county. The predictive models achieved a mean r-squared (R2) of 0.998 in both states with accuracy above 90% for all time points examined. Using these models, we tracked the social determinants of health, with a specific focus on demographics, that were strongly associated with COVID-19 case growth in Tennessee and Georgia counties. The demographic results point to dynamic racial trends in both states over time and varying, localized patterns of risk among counties within the same state. Identifying the specific risk factors tied to COVID-19 case growth can assist public health officials and policymakers target regional interventions to mitigate the burden of future outbreaks and minimize long-term consequences including emergence or exacerbation of chronic diseases that are a direct consequence of infection.

20.
Methods Mol Biol ; 2192: 133-146, 2021.
Article in English | MEDLINE | ID: mdl-33230771

ABSTRACT

RNA turnover is an essential part of the gene expression pathway, and there are several experimental approaches for its determination. High-throughput measurement of global RNA turnover rates can provide valuable information about conditions or proteins that impact gene expression. Here, we present a protocol for mitochondrial RNA turnover analysis which involves metabolic labeling of RNA coupled with quantitative high-throughput fluorescent microscopy. This approach gives an excellent opportunity to discover new factors involved in mitochondrial gene regulation when combined with loss-of-function screening strategy.


Subject(s)
Gene Expression Regulation , Immunohistochemistry/methods , Mitochondria/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Bromouracil/analogs & derivatives , Bromouracil/chemistry , Gene Expression , HeLa Cells , Humans , Microscopy, Fluorescence/methods , RNA Stability , RNA, Mitochondrial/chemistry , RNA, Small Interfering/genetics , Staining and Labeling/methods , Transcription, Genetic , Transfection , Uridine/analogs & derivatives , Uridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...