Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
ACS Catal ; 12(14): 8641-8657, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35903520

ABSTRACT

The heme-based chlorite dismutases catalyze the unimolecular decomposition of chlorite (ClO2 -) to yield Cl- and O2. The work presented here shows that chlorite dismutase from Dechloromonas aromatica (DaCld) also catalyzes the decomposition of bromite (BrO2 -) with the evolution of O2 (k cat = (2.0±0.2)×102 s-1; k cat/K M = (1.2±0.2)×105 M-1 s-1 at pH 5.2). Stopped-flow studies of this BrO2 - decomposition as a function of pH show that 1) the two-electron oxidized heme, compound I (Cpd I), is the primary accumulating heme intermediate during O2 evolution in acidic solution, 2) Cpd I and its one-electron reduction product, compound II (Cpd II) are present in varying ratios at intermediate pHs, and 3) only Cpd II is observed at pH 9.0. The pH dependences of Cpd I and Cpd II populations both yield a pK a of 6.7±0.1 in good agreement with the pK a of DaCld activity with ClO2 -. The observation of a protein-based amino acid radical (AA•) whose appearance coincides with that of Cpd II supports the hypothesis that conversion of Cpd I to Cpd II occurs via proton-coupled electron transfer (PCET) from a heme-pocket amino acid to the oxidized porphyrinate of Cpd I to yield a dead-end decoupled state in which the holes decay at different rates. The site of the amino acid radical is tentatively assigned to Y118, which serves as a H-bond donor to propionate 6 (P6). The favoring of Cpd II:AA• accumulation in alkaline solution is consistent with the amino acid oxidation being rate limited by transfer of its proton to P6 having pK a 6.7. Examination of reaction mixtures comprising DaCld and ClO2 - by resonance Raman and electron paramagnetic resonance spectroscopy reveal formation of Cpd II and •ClO2, which forms in preference to the analogous to AA• in the BrO2 - reaction. Addition of ClO- to Cpd II did not yield O2. Together these results are consistent with heterolytic cleavage of the O-BrO- and O-ClO- bonds yielding Cpd I, which is the catalytically active intermediate. The long-lived Cpd II that forms subsequently, is inactive toward O2 production, and diminishes the amount of enzyme available to cycle through the active Cpd I intermediate.

2.
J Inorg Biochem ; 211: 111203, 2020 10.
Article in English | MEDLINE | ID: mdl-32768737

ABSTRACT

Ferric nitrosyl ({FeNO}6) and ferrous nitrosyl ({FeNO}7) complexes of the chlorite dismutases (Cld) from Klebsiella pneumoniae and Dechloromonas aromatica have been characterized using UV-visible absorbance and Soret-excited resonance Raman spectroscopy. Both of these Clds form kinetically stable {FeNO}6 complexes and they occupy a unique region of ν(Fe-NO)/ν(N-O) correlation space for proximal histidine liganded heme proteins, characteristic of weak Fe-NO and N-O bonds. This location is attributed to admixed FeIII-NO character of the {FeNO}6 ground state. Cld {FeNO}6 complexes undergo slow reductive nitrosylation to yield {FeNO}7 complexes. The effects of proximal and distal environment on reductive nitroylsation rates for these dimeric and pentameric Clds are reported. The ν(Fe-NO) and ν(N-O) frequencies for Cld {FeNO}7 complexes reveal both six-coordinate (6c) and five-coordinate (5c) nitrosyl hemes. These 6c and 5c forms are in a pH dependent equilibrium. The 6c and 5c {FeNO}7 Cld frequencies provided positions of both Clds on their respective ν(Fe-NO) vs ν(N-O) correlation lines. The 6c {FeNO}7 complexes fall below (along the ν(Fe-NO) axis) the correlation line that reports hydrogen-bond donation to NNO, which is consistent with a relatively weak Fe-NO bond. Kinetic and spectroscopic evidence is consistent with the 5c {FeNO}7 Clds having NO coordinated on the proximal side of the heme, analogous to 5c {FeNO}7 hemes in proteins known to have NO sensing functions.


Subject(s)
Ferric Compounds/chemistry , Heme/chemistry , Nitric Oxide/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Betaproteobacteria/enzymology , Ferric Compounds/metabolism , Kinetics , Klebsiella pneumoniae/enzymology , Nitric Oxide/metabolism , Structure-Activity Relationship
3.
J Biol Chem ; 293(11): 3989-3999, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29414780

ABSTRACT

The H2O2-dependent oxidative decarboxylation of coproheme III is the final step in the biosynthesis of heme b in many microbes. However, the coproheme decarboxylase reaction mechanism is unclear. The structure of the decarboxylase in complex with coproheme III suggested that the substrate iron, reactive propionates, and an active-site tyrosine convey a net 2e-/2H+ from each propionate to an activated form of H2O2 Time-resolved EPR spectroscopy revealed that Tyr-145 formed a radical species within 30 s of the reaction of the enzyme-coproheme complex with H2O2 This radical disappeared over the next 270 s, consistent with a catalytic intermediate. Use of the harderoheme III intermediate as substrate or substitutions of redox-active side chains (W198F, W157F, or Y113S) did not strongly affect the appearance or intensity of the radical spectrum measured 30 s after initiating the reaction with H2O2, nor did it change the ∼270 s required for the radical signal to recede to ≤10% of its initial intensity. These results suggested Tyr-145 as the site of a catalytic radical involved in decarboxylating both propionates. Tyr-145• was accompanied by partial loss of the initially present Fe(III) EPR signal intensity, consistent with the possible formation of Fe(IV)=O. Site-specifically deuterated coproheme gave rise to a kinetic isotope effect of ∼2 on the decarboxylation rate constant, indicating that cleavage of the propionate Cß-H bond was partly rate-limiting. The inferred mechanism requires two consecutive hydrogen atom transfers, first from Tyr-145 to the substrate Fe/H2O2 intermediate and then from the propionate Cß-H to Tyr-145•.


Subject(s)
Carboxy-Lyases/metabolism , Ferric Compounds/chemistry , Free Radicals/chemistry , Heme/metabolism , Hydrogen Peroxide/chemistry , Propionates/chemistry , Tyrosine/chemistry , Carboxy-Lyases/genetics , Catalysis , Catalytic Domain , Crystallography, X-Ray , Decarboxylation , Electron Spin Resonance Spectroscopy , Heme/chemistry , Kinetics , Models, Molecular , Mutation , Oxidation-Reduction
4.
Biochemistry ; 57(9): 1501-1516, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29406727

ABSTRACT

O2-evolving chlorite dismutases (Clds) efficiently convert chlorite (ClO2-) to O2 and Cl-. Dechloromonas aromatica Cld ( DaCld) is a highly active chlorite-decomposing homopentameric enzyme, typical of Clds found in perchlorate- and chlorate-respiring bacteria. The Gram-negative, human pathogen Klebsiella pneumoniae contains a homodimeric Cld ( KpCld) that also decomposes ClO2-, albeit with an activity 10-fold lower and a turnover number lower than those of DaCld. The interactions between the distal pocket and heme ligand of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their cyanide complexes for insight into active site characteristics that are deterministic for chlorite decomposition. At 4.7 × 10-9 M, the KD for the KpCld-CN- complex is 2 orders of magnitude smaller than that of DaCld-CN- and indicates an affinity for CN- that is greater than that of most heme proteins. The difference in CN- affinity between Kp- and DaClds is predominantly due to differences in koff. The kinetics of binding of cyanide to DaCld, DaCld(R183Q), and KpCld between pH 4 and 8.5 corroborate the importance of distal Arg183 and a p Ka of ∼7 in stabilizing complexes of anionic ligands, including the substrate. The Fe-C stretching and FeCN bending modes of the DaCld-CN- (νFe-C, 441 cm-1; δFeCN, 396 cm-1) and KpCld-CN- (νFe-C, 441 cm-1; δFeCN, 356 cm-1) complexes reveal differences in their FeCN angle, which suggest different distal pocket interactions with their bound cyanide. Conformational differences in their catalytic sites are also reported by the single ferrous KpCld carbonyl complex, which is in contrast to the two conformers observed for DaCld-CO.


Subject(s)
Cyanides/chemistry , Cyanides/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Chlorides/metabolism , Heme/chemistry , Heme/metabolism , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/metabolism , Models, Molecular , Oxygen/metabolism
5.
Biochemistry ; 56(34): 4509-4524, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28758386

ABSTRACT

O2-evolving chlorite dismutases (Clds) fall into two subfamilies, which efficiently convert ClO2- to O2 and Cl-. The Cld from Dechloromonas aromatica (DaCld) represents the chlorite-decomposing homopentameric enzymes found in perchlorate- and chlorate-respiring bacteria. The Cld from the Gram-negative human pathogen Klebsiella pneumoniae (KpCld) is representative of the second subfamily, comprising homodimeric enzymes having truncated N-termini. Here steric and nonbonding properties of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their fluorides, chlorides, and hydroxides. Cooperative binding of Cl- to KpCld drives formation of a hexacoordinate, high-spin aqua heme, whereas DaCld remains pentacoordinate and high-spin under analogous conditions. Fluoride coordinates to the heme iron in KpCld and DaCld, exhibiting ν(FeIII-F) bands at 385 and 390 cm-1, respectively. Correlation of these frequencies with their CT1 energies reveals strong H-bond donation to the F- ligand, indicating that atoms directly coordinated to heme iron are accessible to distal H-bond donation. New vibrational frequency correlations between either ν(FeIII-F) or ν(FeIII-OH) and ν(FeII-His) of Clds and other heme proteins are reported. These correlations orthogonalize proximal and distal effects on the bonding between iron and exogenous π-donor ligands. The axial Fe-X vibrations and the relationships between them illuminate both similarities and differences in the H-bonding and electrostatic properties of the distal and proximal heme environments in pentameric and dimeric Clds. Moreover, they provide general insight into the structural basis of reactivity toward substrates in heme-dependent enzymes and their mechanistic intermediates, especially those containing the ferryl moiety.


Subject(s)
Bacterial Proteins/chemistry , Chlorides/chemistry , Fluorides/chemistry , Klebsiella pneumoniae/enzymology , Oxidoreductases/chemistry , Peroxides/chemistry , Catalytic Domain , Heme/chemistry , Hydrogen Bonding , Oxygen/chemistry
6.
J Inorg Biochem ; 167: 124-133, 2017 02.
Article in English | MEDLINE | ID: mdl-27974280

ABSTRACT

HtaA is a heme-binding protein that is part of the heme uptake system in Corynebacterium diphtheriae. HtaA contains two conserved regions (CR1 and CR2). It has been previously reported that both domains can bind heme; the CR2 domain binds hemoglobin more strongly than the CR1 domain. In this study, we report the biophysical characteristics of HtaA-CR2. UV-visible spectroscopy and resonance Raman experiments are consistent with this domain containing a single heme that is bound to the protein through an axial tyrosine ligand. Mutants of conserved tyrosine and histidine residues (Y361, H412, and Y490) have been studied. These mutants are isolated with very little heme (≤5%) in comparison to the wild-type protein (~20%). Reconstitution after removal of the heme with butanone gave an alternative form of the protein. The HtaA-CR2 fold is very stable; it was necessary to perform thermal denaturation experiments in the presence of guanidinium hydrochloride. HtaA-CR2 unfolds extremely slowly; even in 6.8M GdnHCl at 37°C, the half-life was 5h. In contrast, the apo forms of WT HtaA-CR2 and the aforementioned mutants unfolded at much lower concentrations of GdnHCl, indicating the role of heme in stabilizing the structure and implying that heme transfer is effected only to a partner protein in vivo.


Subject(s)
Bacterial Proteins/chemistry , Corynebacterium diphtheriae/chemistry , Heme/chemistry , Protein Folding , Bacterial Proteins/genetics , Corynebacterium diphtheriae/genetics , Heme/genetics , Protein Domains
7.
J Am Chem Soc ; 139(5): 1900-1911, 2017 02 08.
Article in English | MEDLINE | ID: mdl-27936663

ABSTRACT

Coproheme decarboxylase catalyzes two sequential oxidative decarboxylations with H2O2 as the oxidant, coproheme III as substrate and cofactor, and heme b as the product. Each reaction breaks a C-C bond and results in net loss of hydride, via steps that are not clear. Solution and solid-state structural characterization of the protein in complex with a substrate analog revealed a highly unconventional H2O2-activating distal environment with the reactive propionic acids (2 and 4) on the opposite side of the porphyrin plane. This suggested that, in contrast to direct C-H bond cleavage catalyzed by a high-valent iron intermediate, the coproheme oxidations must occur through mediating amino acid residues. A tyrosine that hydrogen bonds to propionate 2 in a position analogous to the substrate in ascorbate peroxidase is essential for both decarboxylations, while a lysine that salt bridges to propionate 4 is required solely for the second. A mechanism is proposed in which propionate 2 relays an oxidizing equivalent from a coproheme compound I intermediate to the reactive deprotonated tyrosine, forming Tyr•. This residue then abstracts a net hydrogen atom (H•) from propionate 2, followed by migration of the unpaired propionyl electron to the coproheme iron to yield the ferric harderoheme and CO2 products. A similar pathway is proposed for decarboxylation of propionate 4, but with a lysine residue as an essential proton shuttle. The proposed reaction suggests an extended relay of heme-mediated e-/H+ transfers and a novel route for the conversion of carboxylic acids to alkenes.


Subject(s)
Amino Acids/metabolism , Carboxy-Lyases/metabolism , Amino Acids/chemistry , Carboxy-Lyases/chemistry , Carboxy-Lyases/isolation & purification , Decarboxylation , Geobacillus stearothermophilus/enzymology , Kinetics , Molecular Structure , Oxidation-Reduction
8.
Biochemistry ; 56(1): 189-201, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27982566

ABSTRACT

A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O2 and H2O2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O2 to the ferric state. The subsequent second-order reaction between the ferric complex and H2O2 is slow, pH-dependent, and further decelerated by D2O2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H2O2. Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H2O2 cleavage is therefore unclear. From a cellular perspective, the use of H2O2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.


Subject(s)
Bacterial Proteins/metabolism , Carboxy-Lyases/metabolism , Heme/metabolism , Hemin/analogs & derivatives , Hydrogen Peroxide/metabolism , Oxygen/metabolism , Aerobiosis , Bacterial Proteins/chemistry , Biosynthetic Pathways , Carboxy-Lyases/chemistry , Catalase/metabolism , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Heme/chemistry , Hemin/chemistry , Hemin/metabolism , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Molecular Structure , Oxidation-Reduction , Peracetic Acid/metabolism , Spectrophotometry , Spectrum Analysis, Raman , Staphylococcus aureus/enzymology , Staphylococcus aureus/metabolism
9.
J Biol Inorg Chem ; 21(8): 1021-1035, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27766492

ABSTRACT

The RNA-binding heme protein DiGeorge critical region 8 (DGCR8) and its ribonuclease partner Drosha cleave primary transcripts of microRNA (pri-miRNA) as part of the canonical microRNA (miRNA) processing pathway. Previous studies show that bis-cysteine thiolate-coordinated Fe(III) DGCR8 supports pri-miRNA processing activity, while Fe(II) DGCR8 does not. In this study, we further characterized Fe(II) DGCR8 and tested whether CO or NO might bind and restore pri-miRNA processing activity to the reduced protein. Fe(II) DGCR8 RNA-binding heme domain (Rhed) undergoes a pH-dependent transition from 6-coordinate to 5-coordinate, due to protonation and loss of a lysine ligand; the ligand bound throughout the pH change is a histidine. Fe(II) Rhed binds CO and NO from 6- and 5-coordinate states, forming common CO and NO adducts at all pHs. Fe(II)-CO Rhed is 6-coordinate, low-spin, and pH insensitive with the histidine ligand retained, suggesting that the protonatable lysine ligand has been replaced by CO. Fe(II)-NO Rhed is 5-coordinate and pH insensitive. Fe(II)-NO also forms slowly upon reaction of Fe(III) Rhed with excess NO via a stepwise process. Heme reduction by NO is rate-limiting, and the rate would be negligible at physiological NO concentrations. Importantly, in vitro pri-miRNA processing assays show that both CO- and NO-bound DGCR8 species are inactive. Fe(II), Fe(II)-CO, and Fe(II)-NO Rhed do not bear either of the cysteine ligands found in the Fe(III) state. These data support a model in which the bis-cysteine thiolate ligand environment of Fe(III) DGCR8 is necessary for establishing proper pri-miRNA binding and enabling processing activity.


Subject(s)
Carbon Monoxide/metabolism , Ferrous Compounds/metabolism , Heme/metabolism , MicroRNAs/metabolism , Nitric Oxide/metabolism , RNA-Binding Proteins/metabolism , Binding Sites , Circular Dichroism/methods , Cysteine/analogs & derivatives , Cysteine/chemistry , Cysteine/metabolism , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Ferrous Compounds/chemistry , Heme/chemistry , Histidine/chemistry , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Ligands , Lysine/chemistry , Lysine/metabolism , MicroRNAs/genetics , Models, Biological , Protein Binding , RNA-Binding Proteins/chemistry , Spectrum Analysis, Raman
10.
J Biol Inorg Chem ; 21(7): 875-86, 2016 10.
Article in English | MEDLINE | ID: mdl-27561288

ABSTRACT

The heme-binding protein HmuT is part of the Corynebacterium diphtheriae heme uptake pathway and is responsible for the delivery of heme to the HmuUV ABC transporter. HmuT binds heme with a conserved His/Tyr heme axial ligation motif. Sequence alignment revealed additional conserved residues of potential importance for heme binding: R237, Y272 and M292. In this study, site-directed mutations at these three positions provided insight into the nature of axial heme binding to the protein and its effect on the thermal stability of the heme-loaded protein fold. UV-visible absorbance, resonance Raman (rR) and thermal unfolding experiments, along with collision-induced dissociation electrospray ionization mass spectrometry, were used to probe the contributions of each mutated residue to the stability of ϖ HmuT. Thermal unfolding and rR experiments revealed that R237 and M292 are important residues for heme binding. Arginine 237 is a hydrogen-bond donor to the phenol side chain of Y235, which serves as an axial heme ligand. Methionine 292 serves a supporting structural role, favoring the R237 hydrogen-bond donation, which elicits a, heretofore, unobserved modulating influence on π donation by the axial tyrosine ligand in the heme carbonyl complex, HmuT-CO.


Subject(s)
Bacterial Proteins/chemistry , Conserved Sequence , Heme , Lipoproteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen Bonding , Lipoproteins/genetics , Lipoproteins/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Stability , Protein Structure, Secondary , Protein Unfolding , Sequence Alignment , Temperature
11.
Biochemistry ; 54(43): 6598-609, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26478504

ABSTRACT

The heme uptake pathway (hmu) of Corynebacterium diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. In this study, the axial ligation of the heme in ferric HmuT is probed by examination of wild-type (WT) HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, and M292A. Characterization by UV-visible, resonance Raman, and magnetic circular dichroism spectroscopies indicates that H136 and Y235 are the axial ligands in ferric HmuT. Consistent with this assignment of axial ligands, ferric WT and H136A HmuT are difficult to reduce while Y235A is reduced readily in the presence of dithionite. The FeCO Raman shifts in WT, H136A, and Y235A HmuT-CO complexes provide further evidence of the axial ligand assignments. Additionally, these frequencies provide insight into the nonbonding environment of the heme pocket. Ferrous Y235A and the Y235A-CO complex reveal that the imidazole of H136 exists in two forms, one neutral and one with imidazolate character, consistent with a hydrogen bond acceptor on the H136 side of the heme. The ferric fluoride complex of Y235A reveals the presence of at least one hydrogen bond donor on the Y235 side of the heme. Hemoglobin utilization assays showed that the axial Y235 ligand is required for heme uptake in HmuT.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium diphtheriae/metabolism , Heme/metabolism , Lipoproteins/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites/genetics , Conserved Sequence , Corynebacterium diphtheriae/genetics , Heme/chemistry , Histidine/chemistry , Ligands , Lipoproteins/chemistry , Lipoproteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry , Tyrosine/chemistry
12.
Biochemistry ; 54(26): 4022-32, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26083961

ABSTRACT

A recently proposed pathway for heme b biosynthesis, common to diverse bacteria, has the conversion of two of the four propionates on coproheme III to vinyl groups as its final step. This reaction is catalyzed in a cofactor-independent, H2O2-dependent manner by the enzyme HemQ. Using the HemQ from Staphylococcus aureus (SaHemQ), the initial decarboxylation step was observed to rapidly and obligately yield the three-propionate harderoheme isomer III as the intermediate, while the slower second decarboxylation appeared to control the overall rate. Both synthetic harderoheme isomers III and IV reacted when bound to HemQ, the former more slowly than the latter. While H2O2 is the assumed biological oxidant, either H2O2 or peracetic acid yielded the same intermediates and products, though amounts significantly greater than the expected 2 equiv were required in both cases and peracetic acid reacted faster. The ability of peracetic acid to substitute for H2O2 suggests that, despite the lack of catalytic residues conventionally present in heme peroxidase active sites, reaction pathways involving high-valent iron intermediates cannot be ruled out.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Hydrogen Peroxide/metabolism , Oxidoreductases/metabolism , Staphylococcus aureus/enzymology , Kinetics , Models, Molecular , Peracetic Acid/metabolism , Staphylococcus aureus/metabolism
13.
Biochemistry ; 54(2): 434-46, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25437493

ABSTRACT

Chlorite dismutases (Clds) convert chlorite to O2 and Cl(-), stabilizing heme in the presence of strong oxidants and forming the O═O bond with high efficiency. The enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of their active site structure with efficient O2-producing Clds, even though they have a truncated monomeric structure, exist as a dimer rather than a pentamer, and come from Gram-negative bacteria without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make O2 and may serve an in vivo antioxidant function. Here, it is demonstrated that it degrades chlorite with limited turnovers relative to the respiratory Clds, in part because of the loss of hypochlorous acid from the active site and destruction of the heme. The observation of hypochlorous acid, the expected leaving group accompanying transfer of an oxygen atom to the ferric heme, is consistent with the more open, solvent-exposed heme environment predicted by spectroscopic measurements and inferred from the crystal structures of related proteins. KpCld is more susceptible to oxidative degradation under turnover conditions than the well-characterized Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the presence of chlorate relative to a Δcld knockout strain, specifically under nitrate-respiring conditions. This suggests that a physiological function of KpCld may be detoxification of endogenously produced chlorite.


Subject(s)
Antioxidants/metabolism , Chlorides/metabolism , Klebsiella pneumoniae/enzymology , Oxidoreductases/metabolism , Oxygen/metabolism , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/metabolism , Models, Molecular , Oxidoreductases/chemistry , Protein Multimerization
14.
J Biol Chem ; 289(42): 28795-807, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25170082

ABSTRACT

Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19.


Subject(s)
Cysteine/chemistry , Heme/chemistry , Histidine/chemistry , Lyases/chemistry , Mitochondria/enzymology , Binding Sites , Catalytic Domain , Conserved Sequence , Cytochromes c/chemistry , Escherichia coli , Humans , Ligands , Oligonucleotides/chemistry , Plasmids/metabolism , Protein Folding , Pyridines/chemistry , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Sulfhydryl Compounds/chemistry
15.
Biochim Biophys Acta ; 1840(10): 3058-66, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24968987

ABSTRACT

BACKGROUND: For many pathogenic microorganisms, iron acquisition represents a significant stress during the colonization of a mammalian host. Heme is the single most abundant source of soluble iron in this environment. While the importance of iron assimilation for nearly all organisms is clear, the mechanisms by which heme is acquired and utilized by many bacterial pathogens, even those most commonly found at sites of infection, remain poorly understood. METHODS: An alternative protocol for the production and purification of the outer membrane hemoglobin receptor (HmbR) from the pathogen Neisseria meningitidis has facilitated a biophysical characterization of this outer membrane transporter by electronic absorption, circular dichroism, electron paramagnetic resonance, and resonance Raman techniques. RESULTS: HmbR co-purifies with 5-coordinate high spin ferric heme bound. The heme binding site accommodates exogenous imidazole as a sixth ligand, which results in a 6-coordinate, low-spin ferric species. Both the 5- and 6-coordinate complexes are reduced by sodium hydrosulfite. Four HmbR variants with a modest decrease in binding efficiency for heme have been identified (H87C, H280A, Y282A, and Y456C). These findings are consistent with an emerging paradigm wherein the ferric iron center of bound heme is coordinated by a tyrosine ligand. CONCLUSION: In summary, this study provides the first spectroscopic characterization for any heme or iron transporter in Neisseria meningitidis, and suggests a coordination environment heretofore unobserved in a TonB-dependent hemin transporter. GENERAL SIGNIFICANCE: A detailed understanding of the nutrient acquisition pathways in common pathogens such as N. meningitidis provides a foundation for new antimicrobial strategies.


Subject(s)
Bacterial Proteins/chemistry , Heme/chemistry , Iron/chemistry , Neisseria meningitidis/chemistry , Receptors, Cell Surface/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport, Active/physiology , Heme/genetics , Heme/metabolism , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Protein Binding/physiology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Spectrum Analysis
16.
Biochemistry ; 52(40): 6982-94, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24001266

ABSTRACT

Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O-O bond-forming reaction. The O-O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl-O cleavage of the natural substrate and subsequent O-O bond formation. While reactions with H2O2 result in slow destruction of the heme, at acidic pH heterolytic cleavage of the O-O bond of PAA cleanly yields the ferryl porphyrin cation radical (compound I). At alkaline pH, the reaction proceeds more rapidly, and the first observed intermediate is a ferryl heme. Freeze-quench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl-O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O-O bond formation from chlorite.


Subject(s)
Oxidoreductases/metabolism , Peroxides/chemistry , Heme/metabolism , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Oxidoreductases/chemistry , Peracetic Acid/chemistry , Peracetic Acid/metabolism , Peroxidase/metabolism , Rhodocyclaceae/enzymology
17.
Dalton Trans ; 42(9): 3156-69, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23241559

ABSTRACT

The chlorite dismutases (Clds) degrade ClO(2)(-) to O(2) and Cl(-) in perchlorate respiring bacteria, and they serve still poorly defined cellular roles in other diverse microbes. These proteins share 3 highly conserved Trp residues, W155, W156, and W227, on the proximal side of the heme. The Cld from Dechloromonas aromatica (DaCld) has been shown to form protein-based radicals in its reactions with ClO(2)(-) and peracetic acid. The roles of the conserved Trp residues in radical generation and in enzymatic function were assessed via spectroscopic and kinetic analysis of their Phe mutants. The W155F mutant was the most dramatically affected, appearing to lose the characteristic pentameric oligomerization state, secondary structure, and heme binding properties of the WT protein. The W156F mutant initially retains many features of the WT protein but over time acquires many of the features of W155F. Conversion to an inactive, heme-free form is accelerated by dilution, suggesting loss of the protein's pentameric state. Hence, both W155 and W156 are important for heme binding and maintenance of the protein's reactive pentameric structure. W227F by contrast retains many properties of the WT protein. Important differences are noted in the transient kinetic reactions with peracetic acid (PAA), where W227F appears to form an [Fe(IV)=O]-containing intermediate, which subsequently converts to an uncoupled [Fe(IV)=O + AA(+)˙] system in a [PAA]-dependent manner. This is in contrast to the peroxidase-like formation of [Fe(IV)=O] coupled to a porphyrin π-cation radical in the WT protein, which decays in a [PAA]-independent manner. These observations and the lack of redox protection for the heme in any of the Trp mutants suggests a tendency for protein radical formation in DaCld that is independent of any of these conserved active site residues.


Subject(s)
Conserved Sequence , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxygen/metabolism , Tryptophan , Biocatalysis , Chlorides/metabolism , Enzyme Stability , Heme/metabolism , Kinetics , Ligands , Models, Molecular , Mutation , Oxidoreductases/genetics , Peracetic Acid/metabolism , Protein Conformation , Rhodocyclaceae/enzymology , Spectrum Analysis , Thermodynamics
18.
Biochemistry ; 51(9): 1895-910, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22313119

ABSTRACT

The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O(2) and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O-O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV-visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pK(a) values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pK(a) of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid-base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis.


Subject(s)
Arginine/genetics , Bacterial Proteins/chemistry , Oxidoreductases/chemistry , Oxidoreductases/genetics , Arginine/chemistry , Bacterial Proteins/genetics , Catalysis , Catalytic Domain , Hydrogen Bonding , Kinetics , Mutation , Rhodocyclaceae/enzymology , Spectrum Analysis, Raman , Structure-Activity Relationship
19.
Exp Parasitol ; 127(1): 1-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20493843

ABSTRACT

Nitric oxide (NO) and NO-derived reactive nitrogen species (RNS) are present in the food vacuole (FV) of Plasmodium falciparum trophozoites. The product of PFL1555w, a putative cytochrome b(5), localizes in the FV membrane, similar to what was previously observed for the product of PF13_0353, a putative cytochrome b(5) reductase. These two gene products may contribute to NO generation by denitrification chemistry from nitrate and/or nitrite present in the erythrocyte cytosol. The possible coordination of NO to heme species present in the food vacuole was probed by resonance Raman spectroscopy. The spectroscopic data revealed that in situ generated NO interacts with heme inside the intact FVs to form ferrous heme nitrosyl complexes that influence intra-vacuolar heme solubility. The formation of heme nitrosyl complexes within the FV is a previously unrecognized factor that could affect the equilibrium between soluble and crystallized heme within the FV in vivo.


Subject(s)
Heme/metabolism , Nitric Oxide/metabolism , Plasmodium falciparum/metabolism , Vacuoles/metabolism , Animals , Crystallization , Erythrocytes/parasitology , Heme/chemistry , Humans , Immune Sera , Immunoblotting , Mice , Microscopy, Fluorescence , Plasmodium falciparum/genetics , Plasmodium falciparum/ultrastructure , Solubility , Spectrum Analysis, Raman , Vacuoles/chemistry
20.
Inorg Chem ; 49(14): 6349-65, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20666392

ABSTRACT

Heme is emerging as a key player in the synchrony of circadian-coupled transcriptional regulation. Current evidence suggests that levels of circadian-linked transcription are regulated in response to both the availability of intracellular heme and heme-based sensing of carbon monoxide (CO) and possibly nitric oxide (NO). The protein CLOCK is central to the regulation and maintenance of circadian rhythms in mammals. CLOCK comprises two PAS domains, each with a heme binding site. Our studies focus on the functionality of the murine CLOCK PAS-A domain (residues 103-265). We show that CLOCK PAS-A binds iron(III) protoporhyrin IX to form a complex with 1:1 stoichiometry. Optical absorbance and resonance Raman studies reveal that the heme of ferric CLOCK PAS-A is a six-coordinate, low-spin complex whose resonance Raman signature is insensitive to pH over the range of protein stability. Ferrous CLOCK PAS-A is a mixture of five-coordinate, high-spin and six-coordinate, low-spin complexes. Ferrous CLOCK PAS-A forms complexes with CO and NO. Ferric CLOCK PAS-A undergoes reductive nitrosylation in the presence of NO to generate a CLOCK PAS-A-NO, which is a five-coordinate {FeNO}(7) complex. Formation of the highly stable {FeNO}(7) heme complex from either ferrous or ferric heme makes possible the binding of NO at very low concentration, a characteristic of NO sensors. Comparison of the spectroscopic properties and CO-binding kinetics of CLOCK PAS-A with other CO sensor proteins reveals that CLOCK PAS-A exhibits chemical properties consistent with a heme-based gas sensor protein.


Subject(s)
CLOCK Proteins/physiology , Heme/physiology , Animals , CLOCK Proteins/genetics , Circadian Rhythm , Humans , Mice , Spectrum Analysis, Raman , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...