Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 248: 104007, 2022 06.
Article in English | MEDLINE | ID: mdl-35405439

ABSTRACT

Long-term estimates of natural source zone depletion (NSZD) rates for petroleum LNAPL (light non-aqueous phase liquid) sites are not available. One-off measurements are often thought valid over the lifetime of LNAPL sites. In the context of site-wide LNAPL mass estimates, we report site-specific gasoline and diesel NSZD rates spanning 21-26 years. Using depth profiles of soil gases (oxygen, carbon dioxide, methane, volatiles) above LNAPL, NSZD rates were estimated in 1994, 2006 and 2020 for diesel and 1999, 2009 and 2020 for gasoline. Each date also had soil-core mass estimates, which together with NSZD rates allow estimation of the longevity for LNAPL presence. Site-wide coring (in 1992, 2002, 2007) estimated LNAPL mass reductions of 12,000 t. For diesel NSZD, the ratio of NSZD rates for 2006 (16,000-49,000 L/ha/y) to those in 2020 (2600-14,000 L/ha/y) was ~3-6. By 2020, the 1994 diesel NSZD rates would have predicted the entire removal of measured mass (16-42 kg/m2). For gasoline, NSZD rates in 1999 were extremely high (50,000-270,000 L/ha/y) but 9-27 times lower (5800-10,000 L/ha/y) a decade later. The gasoline NSZD rates in 1999 predicted near complete mass removal in 2-12 years, but 10-11 kg/m2 was measured 10 and 21 years later which is 26% of the initial mass in 1999. The outcomes substantiate the need to understand NSZD rate changes over the lifetime of LNAPL-impacted sites.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Carbon Dioxide/analysis , Gasoline , Soil , Soil Pollutants/analysis
2.
Environ Monit Assess ; 14(2-3): 223-38, 1990 May.
Article in English | MEDLINE | ID: mdl-24243325

ABSTRACT

This paper examines data obtained since 1976 in Peel Inlet and the Harvey Estuary, a shallow estuarine system in Western Australia, which has nuisance growths of macroalgae and seasonal blooms of the cyanobacterium (blue-green alga)Nodularia spumigena. Data collected at the same sites at weekly or fortnightly intervals include phytoplankton (chlorophylla), water nutrients (nitrogen and phosphorus), salinity, temperature and light penetration. Seasonally, the biomass of macroalgae has been measured at a number of sites and used to estimate total biomass.The data are characterised by large season-to-season differences, attributable to the seasonality and volume of river flow. The information has been used to relate the magnitude of summer blue-green algal blooms to the winter loading of phosphorus from the surrounding catchment, and the magnitude of macroalgal biomass to light penetration through the water column.

SELECTION OF CITATIONS
SEARCH DETAIL
...