Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(14): 6575-6596, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31199148

ABSTRACT

Mutations at the arginine residue (R132) in isocitrate dehydrogenase 1 (IDH1) are frequently identified in various human cancers. Inhibition of mutant IDH1 (mIDH1) with small molecules has been clinically validated as a promising therapeutic treatment for acute myeloid leukemia and multiple solid tumors. Herein, we report the discovery and optimization of a series of quinolinones to provide potent and orally bioavailable mIDH1 inhibitors with selectivity over wild-type IDH1. The X-ray structure of an early lead 24 in complex with mIDH1-R132H shows that the inhibitor unexpectedly binds to an allosteric site. Efforts to improve the in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) properties of 24 yielded a preclinical candidate 63. The detailed preclinical ADME and pharmacology studies of 63 support further development of quinolinone-based mIDH1 inhibitors as therapeutic agents in human trials.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Quinolones/chemistry , Quinolones/pharmacology , Allosteric Site/drug effects , Animals , Biological Availability , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Models, Molecular , Point Mutation , Quinolones/pharmacokinetics
2.
Bioorg Med Chem Lett ; 29(8): 1001-1006, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30803804

ABSTRACT

The discovery, structure-activity relationships, and optimization of a novel class of fatty acid synthase (FASN) inhibitors is reported. High throughput screening identified a series of substituted piperazines with structural features that enable interactions with many of the potency-driving regions of the FASN KR domain binding site. Derived from this series was FT113, a compound with potent biochemical and cellular activity, which translated into excellent activity in in vivo models.


Subject(s)
Fatty Acid Synthases/antagonists & inhibitors , Piperazines/chemistry , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Fatty Acid Synthases/metabolism , Half-Life , Humans , Malonyl Coenzyme A/metabolism , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Structure, Tertiary , Rats , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 8(8): 847-852, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835800

ABSTRACT

A protein structure-guided drug design approach was employed to develop small molecule inhibitors of the BET family of bromodomains that were distinct from the known (+)-JQ1 scaffold class. These efforts led to the identification of a series of substituted benzopiperazines with structural features that enable interactions with many of the affinity-driving regions of the bromodomain binding site. Lipophilic efficiency was a guiding principle in improving binding affinity alongside drug-like physicochemical properties that are commensurate with oral bioavailability. Derived from this series was tool compound FT001, which displayed potent biochemical and cellular activity, translating to excellent in vivo activity in a mouse xenograft model (MV-4-11).

4.
J Org Chem ; 73(16): 6397-400, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18642870

ABSTRACT

Beta-aryl-beta-ketophosphonates can be efficiently prepared in good yield by using a TFAA/85% H 3PO 4-mediated acylation of electron-rich arenes with phosphonoacetic acids. The conditions offer advantages over existing methods of preparing these useful compounds by not requiring the use of strong base, cryogenics, or an anhydrous and inert atmosphere. Furthermore, some functional groups not tolerated with the reaction conditions used in existing methods are compatible with the herein described conditions.

5.
Bioorg Med Chem Lett ; 13(18): 3071-4, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12941336

ABSTRACT

The design of bone-targeted pyrido[2,3-d]pyrimidin-7-ones as Src tyrosine kinase inhibitors is described. Leveraging SAR from known compounds and using structure-based methods, we were able to rapidly incorporate bone binding components, which maintained, and even increased potency against the target enzyme. Compound 4 displayed a high affinity for hydroxyapatite, a major constituent of bone, and demonstrated antiresoprtive activity in our cell-based assay.


Subject(s)
Bone Diseases/drug therapy , Bone Resorption/prevention & control , Pyrimidinones/chemical synthesis , src-Family Kinases/antagonists & inhibitors , Animals , Bone Resorption/drug therapy , Computer Simulation , Dentin/metabolism , Drug Design , Durapatite/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Osteoclasts/drug effects , Pyrimidinones/pharmacology , Rabbits , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...