Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(28): 11508-21, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27349178

ABSTRACT

The electronic structures of 4f(3)/5f(3) Cp''3M and Cp''3M·alkylisocyanide complexes, where Cp'' is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal-ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(iii) and uranium(iii) tris-cyclopentadienyl complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. While interaction with the isocyanide π*-orbitals lowers the energies of the 5fxz(2) and 5fyz(2)-orbitals, spin-orbit coupling greatly reduces the population of 5fxz(2) and 5fyz(2) in the ground state.

2.
Chem Sci ; 7(4): 2775-2786, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-28660055

ABSTRACT

A non-oxido V(v) complex with glutaroimide-dioxime (H3L), a ligand for recovering uranium from seawater, was synthesized from aqueous solution as Na[V(L)2]·2H2O, and the structure determined by X-ray diffraction. It is the first non-oxido V(v) complex that has been directly synthesized in and crystallized from aqueous solution. The distorted octahedral structure contains two fully deprotonated ligands (L3-) coordinating to V5+, each in a tridentate mode via the imide N (R V-N = 1.96 Å) and oxime O atoms (R V-O = 1.87-1.90 Å). Using 17O-labelled vanadate as the starting material, concurrent 17O/51V/1H/13C NMR, in conjunction with ESI-MS, unprecedentedly demonstrated the stepwise displacement of the oxido V[double bond, length as m-dash]O bonds by glutaroimide-dioxime and verified the existence of the "bare" V5+/glutaroimide-dioxime complex, [V(L)2]-, in aqueous solution. In addition, the crystal structure of an intermediate 1 : 1 V(v)/glutaroimide-dioxime complex, [VO2(HL)]-, in which the oxido bonds of vanadate are only partially displaced, corroborates the observations by NMR and ESI-MS. Results from this work provide important insights into the strong sorption of vanadium on poly(amidoxime) sorbents in the recovery of uranium from seawater. Also, because vanadium plays important roles in biological systems, the syntheses of the oxido and non-oxido V5+ complexes and the unprecedented demonstration of the displacement of the oxido V[double bond, length as m-dash]O bonds help with the on-going efforts to develop new vanadium compounds that could be of importance in biological applications.

3.
Talanta ; 106: 39-44, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23598093

ABSTRACT

The French Atomic Energy Commission has carried out several experiments for the study of minor-actinide transmutation processes in high intensity thermal neutron flux. In this context a Cm sample enriched in (248)Cm (∼97%) was irradiated in a thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). The precise and accurate determination of Cf isotope ratios and of (249)Bk/(248)Cm and (249)Cf/(248)Cm elemental ratios in the (248)Cm irradiated sample is crucial for the calculation of actinide neutron capture cross-sections. This work describes an analytical procedure for the separation and the isotope ratio measurement of Bk and Cf in the irradiated sample. The Bk and Cf separation is based on a lanthanides separation protocol previously developed by the laboratory. Well-defined retention times for Bk and Cf were obtained by coupling the Ionic Chromatography (IC) with an ICP-QMS. All conditions of element separation by IC and the different steps of the analytical protocol in order to obtain the isotopic and elemental ratios are presented. Relative uncertainties of Cf isotopic ratios range from 0.3% to 0.5% and the uncertainty of the (249)Bk/(248)Cm and (249)Cf/(248)Cm elemental ratios are respectively 6.1% and 3.2%. This level of uncertainty for both isotopic and elemental ratios is in perfect agreement with the requirement for transmutation studies.

4.
Phys Rev Lett ; 95(26): 267202, 2005 Dec 31.
Article in English | MEDLINE | ID: mdl-16486392

ABSTRACT

Kondo coupling of and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems (metallocenes). Evidence for Kondo coupling in Ce(C(8)H(8)(2) (cerocene) and the ytterbocene Cp*(2) Yb(bipy) is reported from magnetic susceptibility and L(III)-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.

SELECTION OF CITATIONS
SEARCH DETAIL
...