Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Langmuir ; 35(18): 6196-6202, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30977660

ABSTRACT

Mass accommodation coefficient, a parameter that captures molecular transport phenomena at liquid-vapor interfaces, is essential for predicting the growth of liquid droplets during condensation processes but is difficult to obtain experimentally. Molecular simulations have been widely used to obtain accommodation coefficients for planar interfaces, but the applicability of planar accommodation coefficients to the high-curvature interfaces present in very small droplets is not clear. In this work, molecular dynamics simulations are used to compute equilibrium mass accommodation coefficients at different temperatures for small droplets of various fluids, including Lennard-Jones and Buckingham fluids, benzene, butane, methane, methanol, and water. For all fluids studied, the mass accommodation coefficient increases with droplet size to a constant limiting value and decreases with temperature. Furthermore, the accommodation coefficient curvature dependence collapses onto a universal curve when appropriately scaled.

2.
Langmuir ; 34(9): 2989-2995, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29432688

ABSTRACT

Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coatings are amorphous thin-film materials composed of hydrogenated amorphous carbon (a-C:H), doped with silicon and oxygen. Compared to a-C:H, a-C:H:Si:O exhibits much lower susceptibility to oxidative degradation and higher thermal stability, making a-C:H:Si:O attractive for many applications. However, the physical mechanisms for this improved behavior are not understood. Here, the thermally induced structural evolution of a-C:H:Si:O was investigated in situ by X-ray photoelectron and absorption spectroscopy, as well as molecular dynamics (MD) simulations. The spectroscopy results indicate that upon high vacuum annealing, two thermally activated processes with a Gaussian distribution of activation energies with mean value E and standard deviation σ take place in a-C:H:Si:O: (a) ordering and clustering of sp2 carbon ( E ± σ = 0.22 ± 0.08 eV) and (b) conversion of sp3- to sp2-bonded carbon ( E ± σ = 3.0 ± 1.1 eV). The experimental results are in qualitative agreement with the outcomes of MD simulations performed using a ReaxFF potential. The MD simulations also indicate that the higher thermal stability of a-C:H:Si:O compared to a-C:H (with similar fraction of sp2-bonded carbon and hydrogen content) derives from the significantly lower fraction of strained carbon-carbon sp3 bonds in a-C:H:Si:O compared to a-C:H, which are more likely to break at elevated temperatures.

3.
J Chem Phys ; 147(24): 244703, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29289123

ABSTRACT

Dual control volume grand canonical molecular dynamics is used to perform the first calculation of fluid-fluid interfacial mobilities. The mobility is calculated from one-dimensional random walks of the interface by relating the diffusion coefficient to the interfacial mobility. Three different calculation methods are employed: one using the interfacial position variance as a function of time, one using the mean-squared interfacial displacement, and one using the time-autocorrelation of the interfacial velocity. The mobility is calculated for two liquid-liquid interfaces and one liquid-vapor interface to examine the robustness of the methods. Excellent agreement between the three calculation methods is shown for all the three interfaces, indicating that any of them could be used to calculate the interfacial mobility.

4.
Phys Rev E ; 94(6-1): 063303, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28085320

ABSTRACT

A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.

5.
Article in English | MEDLINE | ID: mdl-26382440

ABSTRACT

We present a theoretical study of nanorod translocation events through solid-state nanopores of different sizes which result in positive or negative ion conductance changes. Using theoretical models, we show that positive conductance changes or up events happen for nanopore diameters smaller than a transition diameter dt, and negative conductance changes or down events occur for nanopore diameters larger than dt. We investigate the underlying physics of such translocation phenomena and describe the significance of the electric double-layer effects for nanopores with small diameters. Furthermore, for nanopores with large diameters, it is shown that a geometric model, formulated based on the nanoparticle blockade inside the nanopore, provides a straightforward and reasonably accurate prediction of ion conductance change. Based on this concept, we also implement a method to distinguish and detect nanorods of different sizes by focusing solely on the sign and not the exact value of the conductance change.


Subject(s)
Electricity , Models, Theoretical , Nanoparticles , Nanopores , Ions/chemistry
6.
Sci Rep ; 5: 9926, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25993637

ABSTRACT

In this work we discuss the idea of one-way acoustic signal isolation in low dimensional nanoelectromechanical oscillators. We report a theoretical study showing that one-way conversion between in-phase and anti-phase vibrational modes of a double layer graphene nanoribbon is achieved by introducing spatio-temporal modulation of system properties. The required modulation length in order to reach full conversion between the two modes is subsequently calculated. Generalization of the method beyond graphene nanoribbons and realization of a NEMS signal isolator are also discussed.

7.
Nano Lett ; 14(9): 5358-64, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25093657

ABSTRACT

We study translocations of gold nanoparticles and nanorods through silicon nitride nanopores and present a method for determining the surface charge of nanorods from the magnitude of the ionic current change as nanorods pass through the pore. Positively charged nanorods and spherical nanoparticles with average diameters 10 nm and average nanorod lengths between 44 and 65 nm were translocated through 40 nm thick nanopores with diameters between 19 and 27 nm in 1, 10, or 100 mM KCl solutions. Nanorod passage through the nanopores decreases ion current in larger diameter pores, as in the case of typical Coulter counters, but it increases ion current in smaller diameter nanopores, likely because of the interaction of the nanopore's and nanoparticle's double layers. The presented method predicts a surface charge of 26 mC/m(2) for 44 nm long gold nanorods and 18 mC/m(2) for 65 nm long gold nanorods and facilitates future studies of ligand coverage and surface charge effects in anisotropic particles.

8.
Nano Lett ; 14(7): 3785-92, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24885097

ABSTRACT

The unique thermal transport of insulating nanostructures is attributed to the convergence of material length scales with the mean free paths of quantized lattice vibrations known as phonons, enabling promising next-generation thermal transistors, thermal barriers, and thermoelectrics. Apart from size, strain and defects are also known to drastically affect heat transport when introduced in an otherwise undisturbed crystalline lattice. Here we report the first experimental measurements of the effect of both spatially uniform strain and point defects on thermal conductivity of an individual suspended nanowire using in situ Raman piezothermography. Our results show that whereas phononic transport in undoped Si nanowires with diameters in the range of 170-180 nm is largely unaffected by uniform elastic tensile strain, another means of disturbing a pristine lattice, namely, point defects introduced via ion bombardment, can reduce the thermal conductivity by over 70%. In addition to discerning surface- and core-governed pathways for controlling thermal transport in phonon-dominated insulators and semiconductors, we expect our novel approach to have broad applicability to a wide class of functional one- and two-dimensional nanomaterials.

9.
J Chem Phys ; 139(14): 144702, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24116636

ABSTRACT

Nanocrystal superlattices are materials formed by assembly of monodisperse nanocrystal building blocks that are tunable in composition, size, shape, and surface functionalization. Such materials offer the potential to realize unprecedented combinations of physical properties, but theoretical prediction of such properties, particularly elastic properties, remains a challenge. Here we report the Young's moduli, bulk moduli, and Poisson's ratios of CdSe nanocrystal superlattices computed from fully atomistic molecular dynamics simulations, coarse grained models, and effective medium theory. The atomistic simulations yield Young's moduli in the 4-5 GPa range, in agreement with previously reported results for similar nanocrystal superlattice systems. A clear increase of Young's modulus and bulk modulus with increasing nanocrystal core size is observed, while Poisson's ratio decreases slightly with core size. Effective medium theory overpredicts the moduli, and it is surmised that this arises from its neglect of the atomic-level details of the of the core-ligand interface. The coarse grained calculations, using existing nanocrystal interaction models from the literature, also show similar increases with core size but predict moduli that are two orders of magnitude lower than the present atomistic results and previous literature. It is concluded that coarse grained models, in their current form, are not appropriate for calculating elastic properties of nanocrystal superlattices and that fully atomistic models are better suited for this purpose.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 2): 026707, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20365675

ABSTRACT

The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

11.
J Chem Phys ; 120(8): 3841-6, 2004 Feb 22.
Article in English | MEDLINE | ID: mdl-15268549

ABSTRACT

Thermal expansion and impurity effects on the lattice thermal conductivity of solid argon have been investigated with equilibrium molecular dynamics simulation. Thermal conductivity is simulated over the temperature range of 20-80 K. Thermal expansion effects, which strongly reduce thermal conductivity, are incorporated into the simulations using experimentally measured lattice constants of solid argon at different temperatures. It is found that the experimentally measured deviations from a T(-1) high-temperature dependence in thermal conductivity can be quantitatively attributed to thermal expansion effects. Phonon scattering on defects also contributes to the deviations. Comparison of simulation results on argon lattices with vacancy and impurity defects to those predicted from the theoretical models of Klemens and Ashegi et al. demonstrates that phonon scattering on impurities due to lattice strain is stronger than that due to differences in mass between the defect and the surrounding matrix. In addition, the results indicate the utility of molecular dynamics simulation for determining parameters in theoretical impurity scattering models under a wide range of conditions. It is also confirmed from the simulation results that thermal conductivity is not sensitive to the impurity concentration at high temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...