Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(1): e0128923, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38047701

ABSTRACT

IMPORTANCE: There is a strong need to find novel treatment options against urinary tract infections associated with antimicrobial resistance. This study evaluates two atypical tetracyclines, namely chelocardin (CHD) and amidochelocardin (CDCHD), with respect to their pharmacokinetics and pharmacodynamics. We show CHD and CDCHD are cleared at high concentrations in mouse urine. Especially, CDCHD is highly effective in an ascending urinary tract infection model, suggesting further preclinical evaluation.


Subject(s)
Anti-Bacterial Agents , Urinary Tract Infections , Animals , Mice , Microbial Sensitivity Tests , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Tetracyclines/pharmacology , Tetracyclines/therapeutic use , Urinary Tract Infections/drug therapy
2.
Ultrason Sonochem ; 82: 105898, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34973580

ABSTRACT

Waterborne plant viruses can destroy entire crops, leading not only to high financial losses but also to food shortages. Potato virus Y (PVY) is the most important potato viral pathogen that can also affect other valuable crops. Recently, it has been confirmed that this virus is capable of infecting host plants via water, emphasizing the relevance of using proper strategies to treat recycled water in order to prevent the spread of the infectious agents. Emerging environmentally friendly methods such as hydrodynamic cavitation (HC) provide a great alternative for treating recycled water used for irrigation. In the experiments conducted in this study, laboratory HC based on Venturi constriction with a sample volume of 1 L was used to treat water samples spiked with purified PVY virions. The ability of the virus to infect plants was abolished after 500 HC passes, corresponding to 50 min of treatment under pressure difference of 7 bar. In some cases, shorter treatments of 125 or 250 passes were also sufficient for virus inactivation. The HC treatment disrupted the integrity of viral particles, which also led to a minor damage of viral RNA. Reactive species, including singlet oxygen, hydroxyl radicals, and hydrogen peroxide, were not primarily responsible for PVY inactivation during HC treatment, suggesting that mechanical effects are likely the driving force of virus inactivation. This pioneering study, the first to investigate eukaryotic virus inactivation by HC, will inspire additional research in this field enabling further improvement of HC as a water decontamination technology.


Subject(s)
Potyvirus , Hydrodynamics , Plants , Solanum tuberosum , Water
3.
Microb Cell Fact ; 19(1): 230, 2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33341113

ABSTRACT

BACKGROUND: Chelocardin (CHD) exhibits a broad-spectrum antibiotic activity and showed promising results in a small phase II clinical study conducted on patients with urinary tract infections. Importantly, CHD was shown to be active also against tetracycline-resistant Gram-negative pathogens, which is gaining even more importance in today's antibiotic crisis. We have demonstrated that modifications of CHD through genetic engineering of its producer, the actinomycete Amycolatopsis sulphurea, are not only possible but yielded even more potent antibiotics than CHD itself, like 2-carboxamido-2-deacetyl-chelocardin (CD-CHD), which is currently in preclinical evaluation. A. sulphurea is difficult to genetically manipulate and therefore manipulation of the chd biosynthetic gene cluster in a genetically amenable heterologous host would be of high importance for further drug-discovery efforts. RESULTS: We report heterologous expression of the CHD biosynthetic gene cluster in the model organism Streptomyces albus del14 strain. Unexpectedly, we found that the originally defined CHD gene cluster fails to provide all genes required for CHD formation, including an additional cyclase and two regulatory genes. Overexpression of the putative pathway-specific streptomyces antibiotic regulatory protein chdB in A. sulphurea resulted in an increase of both, CHD and CD-CHD production. Applying a metabolic-engineering approach, it was also possible to generate the potent CHD analogue, CD-CHD in S. albus. Finally, an additional yield increase was achieved in S. albus del14 by in-trans overexpression of the chdR exporter gene, which provides resistance to CHD and CDCHD. CONCLUSIONS: We identified previously unknown genes in the CHD cluster, which were shown to be essential for chelocardin biosynthesis by expression of the full biosynthetic gene cluster in S. albus as heterologous host. When comparing to oxytetracycline biosynthesis, we observed that the CHD gene cluster contains additional enzymes not found in gene clusters encoding the biosynthesis of typical tetracyclines (such as oxytetracycline). This finding probably explains the different chemistries and modes of action, which make CHD/CD-CHD valuable lead structures for clinical candidates. Even though the CHD genes are derived from a rare actinomycete A. sulphurea, the yield of CHD in the heterologous host was very good. The corrected nucleotide sequence of the CHD gene cluster now contains all gene products required for the production of CHD in a genetically amenable heterologous host, thus opening new possibilities towards production of novel and potent tetracycline analogues with a new mode of action.


Subject(s)
Genes, Bacterial , Multigene Family , Streptomyces/genetics , Tetracyclines/biosynthesis , Amycolatopsis/genetics , Amycolatopsis/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Cloning, Molecular , Cosmids , Metabolic Engineering , Streptomyces/metabolism , Tetracyclines/pharmacology
4.
Article in English | MEDLINE | ID: mdl-33046497

ABSTRACT

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Subject(s)
Anti-Bacterial Agents , Proteomics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis , Bacterial Proteins/genetics , Tetracyclines
5.
Antibiotics (Basel) ; 9(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962088

ABSTRACT

The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.

6.
ACS Chem Biol ; 14(3): 468-477, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30747520

ABSTRACT

To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.


Subject(s)
Actinomycetales/genetics , Anti-Bacterial Agents/biosynthesis , Tetracyclines/metabolism , Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Glycosylation , Methyltransferases/metabolism , Microbial Sensitivity Tests , Molecular Structure , Mutation , Polyketide Synthases/metabolism , Stereoisomerism , Streptomyces/genetics , Structure-Activity Relationship , Tetracyclines/biosynthesis , Tetracyclines/pharmacology , Transaminases/metabolism
7.
Food Technol Biotechnol ; 55(1): 3-13, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28559729

ABSTRACT

Natural tetracycline (TC) antibiotics were the first major class of therapeutics to earn the distinction of 'broad-spectrum antibiotics' and they have been used since the 1940s against a wide range of both Gram-positive and Gram-negative pathogens, mycoplasmas, intracellular chlamydiae, rickettsiae and protozoan parasites. The second generation of semisynthetic tetracyclines, such as minocycline and doxycycline, with improved antimicrobial potency, were introduced during the 1960s. Despite emerging resistance to TCs erupting during the 1980s, it was not until 2006, more than four decades later, that a third--generation TC, named tigecycline, was launched. In addition, two TC analogues, omadacycline and eravacycline, developed via (semi)synthetic and fully synthetic routes, respectively, are at present under clinical evaluation. Interestingly, despite very productive early work on the isolation of a Streptomyces aureofaciens mutant strain that produced 6-demethyl-7-chlortetracycline, the key intermediate in the production of second- and third-generation TCs, biosynthetic approaches in TC development have not been productive for more than 50 years. Relatively slow and tedious molecular biology approaches for the genetic manipulation of TC-producing actinobacteria, as well as an insufficient understanding of the enzymatic mechanisms involved in TC biosynthesis have significantly contributed to the low success of such biosynthetic engineering efforts. However, new opportunities in TC drug development have arisen thanks to a significant progress in the development of affordable and versatile biosynthetic engineering and synthetic biology approaches, and, importantly, to a much deeper understanding of TC biosynthesis, mostly gained over the last two decades.

8.
Curr Top Microbiol Immunol ; 398: 339-363, 2016.
Article in English | MEDLINE | ID: mdl-27738913

ABSTRACT

Natural products continue to be a predominant source for new anti-infective agents. Research at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and the Helmholtz Centre for Infection Research (HZI) is dedicated to the development of new lead structures against infectious diseases and, in particular, new antibiotics against hard-to-treat and multidrug-resistant bacterial pathogens. In this chapter, we introduce some of the concepts currently being employed in the field of antibiotic discovery. In particular, we will exemplarily illustrate three approaches: (1) Current sources for novel compounds are mainly soil-dwelling bacteria. In the course of our antimicrobial discovery program, a biodiverse collection of myxobacterial strains has been established and screened for antibiotic activities. Based on this effort, one successful example is presented in this chapter: Antibacterial cystobactamids were discovered and their molecular target, the DNA gyrase, was identified soon after the analysis of myxobacterial self-resistance making use of the information found in the respective biosynthesis gene cluster. (2) Besides our focus on novel natural products, we also apply strategies to further develop either neglected drugs or widely used antibiotics for which development of resistance in the clinical setting is an issue: Antimycobacterial griselimycins were first described in the 1960s but their development and use in tuberculosis therapy was not further pursued. We show how a griselimycin derivative with improved pharmacokinetic properties and enhanced potency against Mycobacterium tuberculosis revealed and validated a novel target for antibacterial therapy, the DNA sliding clamp. (3) In a third approach, biosynthetic engineering was used to modify and optimize natural products regarding their pharmaceutical properties and their production scale: The atypical tetracycline chelocardin is a natural product scaffold that was modified to yield a more potent derivative exhibiting activity against multidrug-resistant pathogens. This was achieved by genetic engineering of the producer strain and the resulting compound is now subject to further optimization by medicinal chemistry approaches.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Anti-Bacterial Agents/chemistry , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Drug Discovery , Humans , Mycobacterium tuberculosis/drug effects
9.
Biochim Biophys Acta ; 1864(6): 645-654, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26969785

ABSTRACT

Classical tetracyclines targeting the protein biosynthesis machinery are commonly applied in human and veterinary medicine. The development and spread of resistance seriously compromise the successful treatment of bacterial infections. The atypical tetracycline chelocardin holds promise as it retains activity against tetracycline-resistant strains. It has been suggested that chelocardin targets the bacterial membrane, thus differing in mode of action from that of classical tetracyclines. We investigated the mechanism of action of chelocardin using global proteome analysis. The proteome profiles after sublethal chelocardin stress were compared to a reference compendium containing antibiotic response profiles of Bacillus subtilis. This approach revealed a concentration-dependent dual mechanism of action. At low concentrations, like classical tetracyclines, chelocardin induces the proteomic signature for peptidyl transferase inhibition demonstrating that protein biosynthesis inhibition is the dominant physiological challenge. At higher concentrations B. subtilis mainly responds to membrane stress indicating that at clinically relevant concentrations the membrane is the main antibiotic target of chelocardin. Studying the effects on the membrane in more detail, we found that chelocardin causes membrane depolarization but does not lead to formation of large pores. We conclude that at growth inhibiting doses chelocardin not only targets protein biosynthesis but also corrupts the integrity of the bacterial membrane. This dual mechanism of action might prove beneficial in slowing the development of new resistance mechanisms against this atypical tetracycline.


Subject(s)
Tetracyclines/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Proteome
10.
Angew Chem Int Ed Engl ; 54(13): 3937-40, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25650563

ABSTRACT

Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad-spectrum antibiotic lead was generated with significantly improved activity, including against all Gram-negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Tetracyclines/chemical synthesis , Anti-Bacterial Agents/pharmacology , Chemistry, Pharmaceutical , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Conformation , Protein Engineering , Structure-Activity Relationship , Tetracyclines/pharmacology
11.
Rapid Commun Mass Spectrom ; 29(17): 1556-1562, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-28339151

ABSTRACT

RATIONALE: When applying biosynthetic engineering approaches at the early stages of drug discovery, e.g. aiming to develop novel tetracycline analogues, target compounds are generally produced by engineered microorganisms in low yields. Rapid and reliable identification of metabolites with desired structural modification directly from bacterial cultures is therefore of great importance. METHODS: Structural elucidation of atypical tetracyclines was carried out by fragmentation applying electrospray ionisation tandem mass spectrometry (ESI-MS/MS) (triple quadrupole - linear ion trap; Applied Biosystems 4000 QTRAP) and a high-resolution mass spectrometer (Agilent Technologies 6224 TOF). Fragmentation patterns were obtained either with direct injection or by applying separation of target compounds with high-performance liquid chromatography (HPLC) prior to mass spectrometry. In-source and CID fragmentation were compared. Theoretical calculations of target structures using the Gaussian programme suite were carried out with the aim of strengthening experimental structural elucidation. RESULTS: Recombinant strains of Amycolatopsis sulphurea producing atypical tetracyclines chelocardin, modified chelocardin analogues (9-demethylchelocardin and 2-carboxyamido-2-deacetyl-chelocardin (CDCHD), and anhydrotetracycline (ATC) were analysed by collision-induced dissociation (CID) fragmentation with higher collision energies to yield structurally important fragments which were identified. We have demonstrated that ATC is more prone to fragmentation compared to its epimer, which was further supported by comparison of both structures calculated with ab initio calculations. CONCLUSIONS: We have demonstrated that fragmentation patterns of atypical tetracyclines in CID-MS spectra enable rapid structural elucidation of target metabolites produced by cultures of genetically engineered bacteria. This method is of significant importance for early stages of drug development considering that isolation of target metabolites produced at low concentration is challenging. Copyright © 2015 John Wiley & Sons, Ltd.

12.
Microbiology (Reading) ; 159(Pt 12): 2524-2532, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24043447

ABSTRACT

Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.


Subject(s)
Actinomycetales/genetics , Actinomycetales/metabolism , Anti-Bacterial Agents/biosynthesis , Biosynthetic Pathways/genetics , Multigene Family , Tetracyclines/biosynthesis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...