Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article in English | MEDLINE | ID: mdl-36889041

ABSTRACT

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
2.
Cardiovasc Drugs Ther ; 37(2): 299-305, 2023 04.
Article in English | MEDLINE | ID: mdl-34739648

ABSTRACT

PURPOSE: Despite evidence of myocardial infarct size reduction in animal studies, remote ischaemic conditioning (RIC) failed to improve clinical outcomes in the large CONDI-2/ERIC-PPCI trial. Potential reasons include that the predominantly low-risk study participants all received timely optimal reperfusion therapy by primary percutaneous coronary intervention (PPCI). Whether RIC can improve clinical outcomes in higher-risk STEMI patients in environments with poor access to early reperfusion or PPCI will be investigated in the RIC-AFRICA trial. METHODS: The RIC-AFRICA study is a sub-Saharan African multi-centre, randomized, double-blind, sham-controlled clinical trial designed to test the impact of RIC on the composite endpoint of 30-day mortality and heart failure in 1200 adult STEMI patients without access to PPCI. Randomized participants will be stratified by whether or not they receive thrombolytic therapy within 12 h or arrive outside the thrombolytic window (12-24 h). Participants will receive either RIC (four 5-min cycles of inflation [20 mmHg above systolic blood pressure] and deflation of an automated blood pressure cuff placed on the upper arm) or sham control (similar protocol but with low-pressure inflation of 20 mmHg and deflation) within 1 h of thrombolysis and applied daily for the next 2 days. STEMI patients arriving greater than 24 h after chest pain but within 72 h will be recruited to participate in a concurrently running independent observational arm. CONCLUSION: The RIC-AFRICA trial will determine whether RIC can reduce rates of death and heart failure in higher-risk sub-optimally reperfused STEMI patients, thereby providing a low-cost, non-invasive therapy for improving health outcomes.


Subject(s)
Heart Failure , Ischemic Preconditioning, Myocardial , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/therapy , Ischemic Preconditioning, Myocardial/methods , Treatment Outcome , Ischemia/etiology , Heart Failure/etiology , Double-Blind Method , Africa South of the Sahara/epidemiology , Percutaneous Coronary Intervention/adverse effects
3.
Article in English | MEDLINE | ID: mdl-36445625

ABSTRACT

PURPOSE: Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS: We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS: Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION: RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04699227.

4.
Cardiovasc Drugs Ther ; 36(5): 925-930, 2022 10.
Article in English | MEDLINE | ID: mdl-34169381

ABSTRACT

PURPOSE: Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. "RIC in COVID-19" is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. METHODS: A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. CONCLUSIONS: The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. TRIAL REGISTRATION: NCT04699227, registered January 7th, 2021.


Subject(s)
COVID-19 , Adult , Critical Care , Cytokine Release Syndrome/prevention & control , Cytokines , Endothelial Cells , Humans , Pilot Projects , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...