Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(34): 18449-18460, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612385

ABSTRACT

Nitriles are important constituents of extraterrestrial media. Nitriles are supposed to play a crucial role in prebiotic chemistry occurring in the interstellar medium. In this work, we have investigated the low-temperature radiation-induced transformations of a 1 : 1 CH4HCN complex as a plausible precursor of the simplest nitriles using the matrix isolation approach with FTIR spectroscopic detection. The parent complexes isolated in a noble gas (Ng) matrix were obtained by deposition of the CH4/HCN/Ng gaseous mixture and characterized by comparison of experimental complexation-induced shifts of the HCN fundamentals with the results of the ab initio calculations. It was found that the X-ray irradiation of low-temperature matrices containing the isolated 1 : 1 CH4HCN complex resulted in the formation of acetonitrile (CH3CN) and isoacetonitrile (CH3NC) and it appears to be the first experimental evidence for the formation of C2 nitriles (acetonitrile and isoacetonitrile) from such a "building block". Additionally, a 1 : 1 CH4HNC complex was tentatively assigned to the irradiated Ar and Kr matrices. It is demonstrated that the matrix has a strong effect on the CH3CN/CH3NC yield ratio, which dramatically increases in the row Ar < Kr < Xe. Also, the efficiency of the radiation-induced formation of the CH4HNC complex was shown to decrease from Ar to Kr. It is believed that the proposed pathway for acetonitrile formation may be a significant step in the radiation-induced evolution leading to complex organic molecules and biomolecules under astrochemical conditions. Furthermore, the obtained results provide a prominent example of the impact of very weak intermolecular interactions on the radiation-induced transformations in cold media.

2.
J Phys Chem A ; 123(25): 5199-5205, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31150245

ABSTRACT

The radiation resistance of aromatic compounds is one of the key concepts of basic and applied radiation chemistry in condensed phases. Usually, it is attributed to the intrinsic radiation stability of the benzene ring. In this work, we have demonstrated for the first time that the isolated benzene molecules undergo rather efficient radiation-induced degradation in rigid inert media at cryogenic temperatures (comparable to that of aliphatic hydrocarbons), and their stability is essentially determined by the intermolecular relaxation correlating with matrix polarizability. The principal primary products of benzene radiolysis in matrices are phenyl radicals and fulvene. The matrix environment strongly affects the proportion of these species because of external heavy atom effect on the intersystem crossing, which may trigger further reaction pathways. The obtained results may have important implications for the prediction of radiation stability of complex organic systems and polymers. Furthermore, they may contribute to a better understanding of the radiation-induced evolution of aromatic species in cold interstellar media.

SELECTION OF CITATIONS
SEARCH DETAIL
...