Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Eur J Oral Sci ; 130(5): e12888, 2022 10.
Article in English | MEDLINE | ID: mdl-35917324

ABSTRACT

This study aimed to evaluate the effect of direct pulp capping on the expression of erythropoietin (Epo) and Epo-receptor (Epor) genes in relation to the expression of inflammatory and osteogenic genes in rat pulp. Dental pulps of the first maxillary molars of Wistar Albino rats were exposed and capped with either calcium hydroxide or mineral trioxide aggregate, or were left untreated. After 4 wk, animals were euthanized, and maxillae were prepared for histological and real-time polymerase chain reaction analysis. Histological scores of pulp inflammation and mineralization, and relative expressions of Epo, Epor, inflammatory cytokines, and pulp osteogenic genes were evaluated. The capped pulps showed higher expressions of Epo, while the untreated pulps had the highest expression of Epor. Both calcium hydroxide and mineral trioxide aggregate downregulated the expression of tumor necrosis factor alpha compared to untreated controls, and upregulated transforming growth factor beta compared to healthy controls. Alkaline phosphatase expression was significantly higher in experimental groups. Relative expression of Epo negatively correlated with pulp inflammation, and positively correlated with pulp mineralization. Pulp exposure promoted expression of Epor and pro-inflammatory cytokines, while pulp capping promoted expression of Epo, alkaline phosphatase, and downregulated Epor and pro-inflammatory cytokines.


Subject(s)
Dental Pulp Capping , Erythropoietin/metabolism , Receptors, Erythropoietin/metabolism , Alkaline Phosphatase/metabolism , Aluminum Compounds/pharmacology , Animals , Calcium Hydroxide/pharmacology , Dental Pulp , Drug Combinations , Inflammation/pathology , Oxides/pharmacology , Rats , Rats, Wistar , Silicates/pharmacology , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha/metabolism
2.
Int Endod J ; 55(1): 64-78, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34614243

ABSTRACT

AIM: To investigate the influence of strain differences in immune responses on the pathogenesis of experimental periapical lesions in Dark Agouti (DA) and Albino Oxford (AO) inbred strains of rats. METHODOLOGY: Periapical lesions were induced in male DA and AO rats by pulp exposure of the first mandibular right molars to the oral environment. Animals were killed 21 days after pulp exposure. The mandibular jaws were retrieved and prepared for radiographic, pathohistological, immunohistochemical analysis, real-time PCR and flow cytometry. Blood samples and the supernatant of periapical lesions were collected for measurement of cytokines and oxidative stress marker levels. Statistical analysis was performed using the Kruskal-Wallis H and Mann-Whitney U non-parametric tests or parametric One-Way anova and Independent Samples T-test to determine the differences between groups depending on the normality of the data. A significant difference was considered when p values were <.05. RESULTS: DA rats developed significantly larger (p < .05) periapical lesions compared to AO rats as confirmed by radiographic and pathohistological analysis. The immunohistochemical staining intensity for CD3 was significantly greater in periapical lesions of DA rats compared to AO rats (p < .05). In DA rats, periapical lesions had a significantly higher (p < .05) percentage of CD3+ cells compared to AO rats. Also, the percentage of INF-γ, IL-17 and IL-10 CD3+CD4+ cells was significantly higher in DA rats (p < .05). DA rats had a significantly higher Th17/Th10 ratio. RT-PCR expression of IL-1ß, INF-γ and IL-17 genes was significantly higher in periapical lesions of DA compared to AO rats (p < .05). The receptor activator of nuclear factor kappa-Β ligand/osteoprotegerin ratio was higher in DA compared to AO rats with periapical lesions (p < .05). Systemic levels of TNF-α and IL-6 were significantly higher in DA compared to AO rats (p < .05). Levels of lipid peroxidation measured as thiobarbituric acid reactive substances and reduced glutathione were significantly higher (p < .05) in the supernatant in the periapical lesions of DA rats. CONCLUSION: After pulp exposure, DA rats developed much larger periapical lesions compared to AO rats. Genetically determined differences in immunopathology have been demonstrated to be a significant element defining the severity of periapical lesions.


Subject(s)
Bone Density Conservation Agents , Tumor Necrosis Factor-alpha , Animals , Male , Rats , Rats, Inbred Strains
3.
Front Pharmacol ; 12: 714683, 2021.
Article in English | MEDLINE | ID: mdl-34803672

ABSTRACT

Galectin-3 (Gal-3) has diverse roles in inflammatory and autoimmune diseases. There is evidence that Gal-3 plays a role in both type 1 and type 2 diabetes. While the role of Gal-3 expression in immune cells invading the pancreatic islets in the experimental model of type 1 diabetes mellitus has been already studied, the importance of the overexpression of Gal-3 in the target ß cells is not defined. Therefore, we used multiple low doses of streptozotocin (MLD-STZ)-induced diabetes in C57Bl/6 mice to analyze the effect of transgenic (TG) overexpression of Gal-3 in ß cells. Our results demonstrated that the overexpression of Gal-3 protected ß cells from apoptosis and attenuated MLD-STZ-induced hyperglycemia, glycosuria, and ketonuria. The cellular analysis of pancreata and draining lymph nodes showed that Gal-3 overexpression significantly decreased the number of pro-inflammatory cells without affecting the presence of T-regulatory cells. As the application of exogenous interleukin 33 (IL-33) given from the beginning of MLD-STZ diabetes induction attenuates the development of disease, by increasing the presence of regulatory FoxP3+ ST2+ cells, we evaluated the potential synergistic effect of the exogenous IL-33 and TG overexpression of Gal-3 in ß cells at the later stage of diabetogenesis. The addition of IL-33 potentiated the survival of ß cells and attenuated diabetes even when administered later, after the onset of hyperglycemia (12-18 days), suggesting that protection from apoptosis and immunoregulation by IL-33 may attenuate type 1 diabetes.

4.
Immunol Lett ; 233: 57-67, 2021 05.
Article in English | MEDLINE | ID: mdl-33753135

ABSTRACT

Galectin-3 (Gal-3) is the only member of galectin family able to form pentamers and heterodimers with chemokines. Its presence in various cells and tissues suggests variety of regulatory functions in physiological conditions, but increasing body of evidence indicates involvement of Gal-3 in pathological cascades of many diseases. Gal-3 exerts different, sometimes opposite, effects in various disorders or in different phases of the same disease. These differences in action of Gal-3 are related to the localization of Gal-3 in the cell, types of receptors through which it acts, or the types of cells that secrete it. As a regulator of immune response and T-cell activity, Gal-3 appears to have important role in development of autoimmunity mediated by T cells. Absence of Gal-3 in C57Bl6 mice favors Th2 mediated inflammatory myocarditis but attenuate fibrosis. Recent data also indicate Gal-3 involvement in development atherosclerosis. In pathogenesis of diabetes type 1 and autoimmune components of diabetes type 2 Gal-3 may have detrimental or protective role depending on its intracellular or extracellular localization. Gal-3 mediates autoimmune hepatic damage through activation of T-cells or natural killer T cells. Gal-3 is an important mediator in neurodevelopment, neuropathology and behavior due to its expression both in neurons and glial cells. All together, assessing the role of Gal-3 in immunopathology and autoimmunity it could be concluded that it is an important participant in pathogenesis, as well as promising monitoring marker and therapeutic target.


Subject(s)
Autoimmunity , Disease Susceptibility , Galectin 3/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Autoimmune Diseases/diagnosis , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Autoimmunity/genetics , Biomarkers , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Discovery , Galectin 3/antagonists & inhibitors , Galectin 3/chemistry , Galectin 3/genetics , Gene Expression Regulation , Humans , Mice , Molecular Targeted Therapy , Organ Specificity , Protein Binding , Protein Multimerization , Protein Transport , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
5.
Biomolecules ; 10(5)2020 05 21.
Article in English | MEDLINE | ID: mdl-32455781

ABSTRACT

: There is a plethora of evidence to suggest that Galectin-3 plays an important role in normal functions of mammalian cells, as well as in different pathogenic conditions. This review highlights recent data published by researchers, including our own team, on roles of Galectin-3 in the nervous system. Here, we discuss the roles of Galectin-3 in brain development, its roles in glial cells, as well as the interactions of glial cells with other neural and invading cells in pathological conditions. Galectin-3 plays an important role in the pathogenesis of neuroinflammatory and neurodegenerative disorders, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease. On the other hand, there is also evidence of the protective role of Galectin-3 due to its anti-apoptotic effect in target cells. Interestingly, genetic deletion of Galectin-3 affects behavioral patterns in maturing and adult mice. The results reviewed in this paper and recent development of highly specific inhibitors suggests that Galectin-3 may be an important therapeutic target in pathological conditions including the disorders of the central nervous system.


Subject(s)
Galectin 3/metabolism , Mood Disorders/metabolism , Neurodegenerative Diseases/metabolism , Animals , Galectin 3/chemistry , Galectin 3/genetics , Humans , Mood Disorders/genetics , Neurodegenerative Diseases/genetics , Neurogenesis
6.
Cancer Immunol Immunother ; 69(8): 1461-1475, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32285171

ABSTRACT

Interleukin-33 (IL-33) regulates innate and acquired immune response to pathogens, self-antigens and tumors. IL-33 effects on tumors depend on the dose and mode of administration along with the type of malignancy. We studied the effects of IL-33 on the development of primary and metastatic melanoma induced by B16-F1 cell line in C57BL/6 mice. Intraperitoneally applied IL-33 restricts primary tumor growth. When administered intranasally 3 days prior to the intravenous injection of the tumor cells, IL-33 promoted growth of B16-F1 melanoma metastases, while B16-F10 gave massive metastases independently of IL-33. To mimic natural dissemination, we next used a limited number (5 × 104) of B16-F1 cells intravenously followed by application of IL-33 intraperitoneally. IL-33 increased the size of metastases (10.96 ± 3.96 mm2) when compared to the control group (0.86 ± 0.39 mm2), without changing incidence and number of metastases. IL-33 increased expression of ST2 on both tumor and immune cells in metastases. Also, IL-33 enhanced eosinophils and anti-tumor NK cells in the lung. The striking finding was reduced cytotoxicity of CD8+ T cells derived from metastatic lung of IL-33 injected mice. IL-33 reduced the percentage of TNF-α+ and IFN-γ+ CD8+ T cells while increasing the frequency of CD8+ T cells that express inhibitory molecules (PD-1, KLRG-1 and CTLA-4). There was a significant accumulation of CD11b+Gr-1+ myeloid suppressor cells and FoxP3+, IL-10+ and CTLA-4+ regulatory T cells in the metastatic lung of IL-33 injected mice. The relevance of IL-33 for melanoma metastases was also documented in a significantly increased level of serum IL-33 in stage III melanoma patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-33/administration & dosage , Interleukin-33/blood , Lung Neoplasms/secondary , Melanoma, Experimental/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Apoptosis , Biomarkers, Tumor/blood , CD8-Positive T-Lymphocytes/drug effects , Case-Control Studies , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Prognosis , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Regulatory/drug effects , Tumor Cells, Cultured
7.
Article in English | MEDLINE | ID: mdl-32117058

ABSTRACT

Aims/Hypothesis: Galectin 3 appears to play a proinflammatory role in several inflammatory and autoimmune diseases. Also, there is evidence that galectin 3 plays a role in both type-1 and type-2 diabetes. During obesity, hematopoietic cell-derived galectin 3 induces insulin resistance. While the role of galectin 3 expressed in islet-invading immune cells in both type-1 and type-2 diabetes has been studied, the importance of the expression of this molecule on the target pancreatic ß cells has not been defined. Methods: To clarify the role of galectin 3 expression in ß cells during obesity-induced diabetogenesis, we developed transgenic mice selectively overexpressing galectin 3 in ß cells and tested their susceptibility to obesity-induced type-2 diabetes. Obesity was induced with a 16-week high-fat diet regime. Pancreatic ß cells were tested for susceptibility to apoptosis induced by non-esterified fatty acids and cytokines as well as parameters of oxidative stress. Results: Our results demonstrated that overexpression of galectin 3 increases ß-cell apoptosis in HFD conditions and increases the percentage of proinflammatory F4/80+ macrophages in islets that express galectin 3 and TLR4. In isolated islets, we have shown that galectin 3 overexpression increases cytokine and palmitate-triggered ß-cell apoptosis and also increases NO2--induced oxidative stress of ß cells. Also, in pancreatic lymph nodes, macrophages were shifted toward a proinflammatory TNF-α-producing phenotype. Conclusions/Interpretation: By complementary in vivo and in vitro approaches, we have shown that galectin 3-overexpression facilitates ß-cell damage, enhances cytokine and palmitate-triggered ß-cell apoptosis, and increases NO2--induced oxidative stress in ß cells. Further, the results suggest that increased expression of galectin 3 in the pancreatic ß cells affects the metabolism of glucose and glycoregulation in mice on a high-fat diet, affecting both fasting glycemic values and glycemia after glucose loading.


Subject(s)
Apoptosis/genetics , Diabetes Mellitus, Type 2/genetics , Galectin 3/genetics , Inflammation/genetics , Insulin-Secreting Cells/physiology , Islets of Langerhans/pathology , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Inflammation/metabolism , Inflammation/pathology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity/genetics , Pancreatitis/genetics , Pancreatitis/metabolism
8.
Biochimie ; 167: 198-206, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31639404

ABSTRACT

The study investigates conformational analysis and the in vitro cytokine-mediated immunomodulatory and insulin-releasing activities of rhinophrynin-27 (ELRLPEIARPVPEVLPARLPLPALPRN; RP-27), a proline-arginine-rich peptide first isolated from skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae). In both water and 50% trifluoroethanol-water, the peptide adopts a polyproline type II helical conformation with a high degree of deviation from the canonical collagen-like folding and a pronounced bend in the molecule at the Glu13 residue. Incubation of mouse peritoneal cells with RP-27 significantly (P < 0.05) inhibited production of the pro-inflammatory cytokines TNF-α and IL-1ß and stimulated production of the anti-inflammatory cytokine IL-10. The peptide significantly (P < 0.01) stimulated release of insulin from BRIN-BD11 rat clonal ß-cells at concentrations ≥ 1 nM while maintaining the integrity of the plasma membrane and also stimulated insulin release from isolated mouse islets at a concentration of 10-6 M. Increasing the cationicity of RP-27 by substituting glutamic acid residues in the peptide by arginine and increasing hydrophobicity by substituting alanine residues by tryptophan did not result in analogues with increased activity with respect to cytokine production and insulin release. The combination of immunosuppressive and insulinotropic activities together with very low cytotoxicity suggests that RP-27 may represent a template for the development of an agent for use in anti-inflammatory and Type 2 diabetes therapies.


Subject(s)
Anti-Inflammatory Agents , Antimicrobial Cationic Peptides , Hypoglycemic Agents , Insulin-Secreting Cells/immunology , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cells, Cultured , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/cytology , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Molecular Conformation , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
9.
Theranostics ; 9(20): 5976-6001, 2019.
Article in English | MEDLINE | ID: mdl-31534532

ABSTRACT

Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Cisplatin/toxicity , Galectin 3/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Toll-Like Receptor 2/metabolism , Acute Kidney Injury/genetics , Animals , Cells, Cultured , Flow Cytometry , Galectin 3/genetics , Immunohistochemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/genetics , Male , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , T-Lymphocytes, Regulatory/metabolism , Toll-Like Receptor 2/genetics
10.
Cells ; 8(7)2019 07 12.
Article in English | MEDLINE | ID: mdl-31336879

ABSTRACT

Galectin-3 regulates numerous biological processes in the gut. We investigated molecular mechanisms responsible for the Galectin-3-dependent regulation of colon inflammation and evaluated whether Galectin-3 may be used as biomarker for monitoring the progression of ulcerative colitis (UC). The differences in disease progression between dextran sodium sulphate-treated wild type and Galectin-3-deficient mice were investigated and confirmed in clinical settings, in 65 patients suffering from mild, moderate, and severe colitis. During the induction phase of colitis, Galectin-3 promoted interleukin-1ß-induced polarization of colonic macrophages towards inflammatory phenotype. In the recovery phase of colitis, Galectin-3 was required for the immunosuppressive function of regulatory dendritic cells (DCs). Regulatory DCs in Galectin-3:Toll-like receptor-4:Kynurenine-dependent manner promoted the expansion of colon-infiltrated T regulatory cells (Tregs) and suppressed Th1 and Th17 cell-driven colon inflammation. Concentration of Galectin-3 in serum and stool samples of UC patients negatively correlated with clinical, endoscopic, and histological parameters of colitis. The cutoff serum values of Galectin-3 that allowed the discrimination of mild from moderate and moderate from severe colitis were 954 pg/mL and 580 pg/mL, respectively. Fecal levels of Galectin-3 higher than 553.44 pg/mL indicated attenuation of UC. In summing up, Galectin-3 regulates the cross-talk between colon-infiltrating DCs and Tregs and represents a new biomarker for monitoring the progression of UC.


Subject(s)
Colitis, Ulcerative/pathology , Dendritic Cells/pathology , Galectin 3/physiology , T-Lymphocytes, Regulatory/pathology , Adult , Aged , Aged, 80 and over , Animals , Biomarkers/metabolism , Blood Proteins , Cells, Cultured , Disease Progression , Female , Galectins , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged
11.
Front Immunol ; 10: 1309, 2019.
Article in English | MEDLINE | ID: mdl-31231399

ABSTRACT

Gal-3 has the role in multiple inflammatory pathways. Multiple-hit etiology of primary biliary cholangitis (PBC) and evolving immune response at various stages of the disease includes involvement of Gal-3 in PBC pathogenesis. In this study we aimed to clarify the role of Gal-3 in Novosphingobium aromaticivorans (N. aromaticivorans) induced biliary disease. Autoimmune cholangitis was induced in mice by two intra-peritoneal injections of N. aromaticivorans within 2 weeks. The role of Gal-3 was evaluated by using Lgals3-/- mice and mice treated with Gal-3 inhibitor. The histological and serological parameters of disease, phenotype of dendritic, NK, NKT, and T cells and inflammasome expression were evaluated. Marked attenuation of the disease in Lgals3-/- and Gal-3 inhibitor, DAVANAT®, treated mice is manifested by the absence of bile duct damage, granulomas and fibrosis. Liver infiltrates of N. aromaticivorans infected wild type mice had higher incidence of pro-inflammatory macrophages, dendritic cells, NK, NKT, and T cells. Lgals3 deletion and treatment with Gal-3 inhibitor reduced inflammatory mononuclear cell infiltrate, expression of NLRP3 inflammasome in the liver infiltrates and interleukin-1ß (IL-1ß) production in the livers of N. aromaticivorans infected mice. In vitro stimulation of wild type peritoneal macrophages with N. aromaticivorans caused increased NLRP3 expression, caspase-1 activity and IL-1ß production compared with Lgals3-/- cells. Our data highlight the importance of Gal-3 in promotion of inflammation in N. aromaticivorans induced PBC by enhancing the activation of NLRP3 inflammasome and production of IL-1ß and indicate Gal-3 as possible therapeutical target in autoimmune cholangitis. Galectin-3 appears involved in inflammatory response to gut commensal leading to PBC.


Subject(s)
Autoimmune Diseases/immunology , Cholangitis/immunology , Galectin 3/immunology , Inflammasomes/immunology , Interleukin-17/immunology , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingomonadaceae/immunology
12.
Cytokine ; 120: 242-250, 2019 08.
Article in English | MEDLINE | ID: mdl-31132589

ABSTRACT

OBJECTIVE: Inflammation plays a crucial role in the progression of atherosclerotic plaques. The aim of the study was to investigate serum levels and expression of Interleukin-33 (IL-33) and ST2 receptor in atherosclerotic plaques and to analyze correlation with the type of the carotid plaques in patients with carotid disease. METHODS: This study included 191 consecutive patients submitted for carotid endarterectomy (CEA). Preoperative serum levels of IL-33 and soluble ST2 (sST2) were measured. Atherosclerotic plaques obtained during surgery were initially histologically classified and immunohistochemical analyzes of IL-33, IL-33R, CD68 and alpha-SMA expression was performed. Ultrasound assessment of the level of carotid stenosis in each patient was performed prior to carotid surgery. Demographic and clinical data such as gender, age, smoking status, blood pressure, glycaemia, hemoglobin and creatinine levels, and comorbidities were collected and the comparisons between variables were statistically evaluated. RESULTS: Serum levels of IL-33 (35.86 ±â€¯7.93 pg/ml vs.12.29 ±â€¯1.8 pg/ml, p < 0.05) and sST2 (183 ±â€¯8.03 pg/ml vs. 122.31 ±â€¯15.89 pg/ml, p < 0.05) were significantly higher in the group of CEA patients vs. healthy subjects. We demonstrated abundant tissue expression of IL-33 and ST2 in atherosclerotic carotid artery lesions. The levels of IL-33 and IL-33R expression were significantly higher in vulnerable plaques and significantly correlated with the degree of inflammatory cells infiltration in these plaques (R = 0.579, p = 0.049). Immunohistochemical analysis also revealed that cells responsible for IL-33 expression are not only mononuclear cells confined to inflammatory atherosclerotic lesions, but also smooth muscle cells which gained phenotypic characteristics of foam cells and were loaded with lipid droplets. CONCLUSION: The obtained results confirm the importance of IL-33/ST2 axis in the process of atherosclerosis, and indicate its ambiguous function in immune response, whether as proinflammatory cytokine in advanced atherosclerotic lesions, or as profibrotic, in early lesions.


Subject(s)
Atherosclerosis/blood , Carotid Arteries/pathology , Interleukin-1 Receptor-Like 1 Protein/blood , Interleukin-33/blood , Aged , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Atherosclerosis/complications , Atherosclerosis/pathology , Carotid Arteries/surgery , Diabetes Mellitus/blood , Endarterectomy, Carotid , Female , Humans , Hypertension/blood , Hypertension/complications , Inflammation/blood , Inflammation/complications , Male , Plaque, Atherosclerotic/pathology
13.
Eur J Immunol ; 49(6): 940-946, 2019 06.
Article in English | MEDLINE | ID: mdl-30892686

ABSTRACT

Acute pancreatitis is characterized by autodigestion of pancreatic cells followed by acute inflammation leading to pathology and death. In experimental acute pancreatitis, pancreatic acinar cells and infiltrating macrophages express Galectin-3 but its role in pathology of this disease is unknown. Therefore, we studied its role using Galectin-3 deficient mice. Deletion of Galectin-3 prolonged the survival of mice, led to attenuation of histopathology, and decreased infiltration of mononuclear cells and neutrophils that express TLR-4, in particular, pro-inflammatory N1 neutrophils. Galectin-3 and TLR-4 are also colocalized on infiltrating cells. Lack of Galectin-3 reduced expression of pro-inflammatory TNF-α and IL-1ß in F4/80+ CD11c- and CD11c+ F4/80- cells. Thus, deletion of Galectin-3 ameliorates acute pancreatitis by attenuating early influx of neutrophils and inflammatory mononuclear cells of innate immunity. These findings provide the basis to consider Galectin-3 as a therapeutic target in acute pancreatitis.


Subject(s)
Galectin 3/immunology , Immunity, Innate/immunology , Pancreatitis/immunology , Animals , Disease Models, Animal , Galectin 3/deficiency , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology
14.
Front Microbiol ; 10: 185, 2019.
Article in English | MEDLINE | ID: mdl-30800112

ABSTRACT

Galectin-3 (Gal-3) has a role in multiple inflammatory pathways. Various, opposite roles of Gal-3 in liver diseases have been described but there are no data about the role of Gal-3 in development of hepatitis induced with cytomegalovirus infection. In this study we aimed to clarify the role of Gal-3 in murine cytomegalovirus (MCMV)-induced hepatitis by using Gal-3-deficient (Gal-3 KO) mice. Here we provide the evidence that Gal-3 has the protective role in MCMV-induced hepatitis. Enhanced hepatitis manifested by more inflammatory and necrotic foci and serum level of ALT, enhanced apoptosis and necroptosis of hepatocytes and enhanced viral replication were detected in MCMV-infected Gal-3 deficient mice. NK cells does not contribute to more severe liver damage in MCMV-infected Gal-3 KO mice. Enhanced expression of TNF-α in the hepatocytes of Gal-3 KO mice after MCMV infection, abrogated hepatocyte death, and attenuated inflammation in the livers of Gal-3 KO mice after TNF-α blockade suggest that TNF-α plays the role in enhanced disease in Gal-3 deficient animals. Treatment with recombinant Gal-3 reduces inflammation and especially necrosis of hepatocytes in the livers of MCMV-infected Gal-3 KO mice. Our data highlight the protective role of Gal-3 in MCMV-induced hepatitis by attenuation of TNF-α-mediated death of hepatocytes.

15.
J Pept Sci ; 25(4): e3153, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30734396

ABSTRACT

The aim of the study was to determine the in vitro immunomodulatory, cytotoxic, and insulin-releasing activities of seven phylloseptin-TR peptides and plasticin-TR, first isolated from the frog Phyllomedusa trinitatis. The most cationic peptides, phylloseptin-1.1TR and phylloseptin-3.1TR, showed greatest cytotoxic potency against A549, MDA-MB231, and HT-29 human tumor-derived cells and against mouse erythrocytes. Phylloseptin-4TR was the most hydrophobic and the most effective peptide at inhibiting production of the proinflammatory cytokines TNF-α and IL-1ß by mouse peritoneal cells but was without effect on production of the antiinflammatory cytokine IL-10. Phylloseptin-2.1TR and phylloseptin-3.3TR were the most effective at stimulating the production of IL-10. The noncytotoxic peptide, plasticin-TR, inhibited production of TNF-α and IL-1ß but was without effect on IL-10 production. The results of CD spectroscopy suggest that the different properties of plasticin-TR compared with the immunostimulatory activities of the previously characterized plasticin-L1 from Leptodactylus laticeps may arise from greater ability of plasticin-TR to oligomerize and adopt a stable helical conformation in a membrane-mimetic environment. All peptides stimulated release of insulin from BRIN-BD11 rat clonal ß cells with phylloseptin-3.2TR being the most potent and effective and phylloseptin-2.1TR the least effective suggesting that insulinotropic potency correlates inversely with helicity. The study has provided insight into structure-activity relationships among the phylloseptins. The combination of immunomodulatory and insulinotropic activities together with low cytotoxicity suggests that phylloseptin-3.3TR and plasticin-TR may represent templates for the development of agents for use in antiinflammatory and type 2 diabetes therapies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Anura , Cytotoxins/pharmacology , Eye Proteins/pharmacology , Immunomodulation/drug effects , Insulin/metabolism , Nerve Tissue Proteins/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/isolation & purification , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/isolation & purification , Cell Line , Cell Survival/drug effects , Eye Proteins/chemistry , Eye Proteins/immunology , Eye Proteins/isolation & purification , Humans , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/isolation & purification , Rats
16.
Brain Behav Immun ; 78: 177-187, 2019 05.
Article in English | MEDLINE | ID: mdl-30682502

ABSTRACT

Galectin-3 (Gal-3), a member of lectin family that binds to oligosaccharides, is involved in several biological processes, including maturation and function of nervous system. It had been reported that Gal-3 regulates oligodendrocytes differentiation and that Gal-3/Toll-like receptor-4 (TLR4) axis is involved in neuroinflammation. As both, central nervous system (CNS) maturation and neuroinflammation may affect behavior, the principle aim of this study was to examine the effects of Gal-3 gene deletion on behavior. Here we provide the evidence that Gal-3 deficiency shows clear anxiogenic effect in mature untreated animals (basal conditions). This was accompanied with lower interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) relative gene expression and hippocampal content, with no effect on TLR4 expression. Gal-3 deficiency was also accompanied with lower brain-derived neurotrophic factor (BDNF) relative gene expression and immunoreactivity in hippocampus (predominantly in CA1 region). Besides, the Gal-3 gene deletion resulted in attenuation of the hippocampal relative gene expression of GABA-A receptor subunits 2 and 5 (GABA-AR2S and GABA-AR5S), On the other hand, Gal-3 deficiency attenuates LPS-induced neuroinflammation. The anxiogenic effect of acute neuroinflammation was accompanied with increased hippocampal IL-6, TNF-α and TLR4 gene expression, as well as decreased gene and immunohistochemical BDNF expression in hippocampus, with significant decline in GABA-AR2S in wild type (WT) mice in comparison to basal conditions. Gal-3 gene deletion prevented the increase in IL-6, the decline in BDNF gene expression and immunoreactivity, and reduction in hippocampal GABA-AR2S, and therefore attenuated the anxiogenic effect of neuroinflammation. In summary, our data demonstrate that apparently opposite effects of Gal-3 deficiency on anxiety levels (anxiogenic effect under basal conditions and anxiolytic action during neuroinflammation) seem to be related to the shift in IL-6, TNF-α and hippocampal BDNF.


Subject(s)
Anxiety/metabolism , Galectin 3/metabolism , Animals , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Anxiety/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Galectin 3/genetics , Hippocampus/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
Front Immunol ; 9: 2646, 2018.
Article in English | MEDLINE | ID: mdl-30498495

ABSTRACT

Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic ß-cells. Prevention of type 1 diabetes requires early intervention in the autoimmune process against beta-cells of the pancreatic islets of Langerhans, which is believed to result from disordered immunoregulation. CD4+Foxp3+ regulatory T cells (Tregs) participate as one of the most important cell types in limiting the autoimmune process. The aim of this study was to investigate the effect of exogenous IL-33 in multiple low dose streptozotocin (MLD-STZ) induced diabetes and to delineate its role in the induction of protective Tregs in an autoimmune attack. C57BL/6 mice were treated i. p. with five doses of 40 mg/kg STZ and 0.4 µg rIL-33 four times, starting from day 0, 6, or 12 every second day from the day of disease induction. 16 weeks old NOD mice were treated with 6 injections of 0.4 µg/mouse IL-33 (every second day). Glycemia and glycosuria were measured and histological parameters in pancreatic islets were evaluated at the end of experiments. Cellular make up of the pancreatic lymph nodes and islets were evaluated by flow cytometry. IL-33 given simultaneously with the application of STZ completely prevented the development of hyperglycemia, glycosuria and profoundly attenuated mononuclear cell infiltration. IL-33 treatment was accompanied by higher number of IL-13 and IL-5 producing CD4+ T cells and increased presence of ST2+Foxp3+ regulatory T cells in pancreatic lymph nodes and islets. Elimination of Tregs abrogated protective effect of IL-33. We provide evidence that exogenous IL-33 completely prevents the development of T cell mediated inflammation in pancreatic islets and consecutive development of diabetes in C57BL/6 mice by facilitating the induction Treg cells. To extend this finding for possible relevance in spontaneous diabetes, we showed that IL-33 attenuate insulitis in prediabetic NOD mice.


Subject(s)
Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Interleukin-33/metabolism , Prediabetic State/chemically induced , Prediabetic State/metabolism , Streptozocin/administration & dosage , Animals , Autoimmune Diseases/chemically induced , Autoimmune Diseases/metabolism , Cytokines/metabolism , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , Female , Forkhead Transcription Factors/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism
18.
Immunol Res ; 66(4): 491-502, 2018 08.
Article in English | MEDLINE | ID: mdl-30099675

ABSTRACT

Experimental autoimmune myocarditis (EAM) is a mouse model of immune-mediated myocarditis and cardiomyopathy. The role of Galectin-3 (Gal-3), a ß-galactoside-binding lectin, in autoimmune myocarditis has not been studied. Therefore, the aim of this study was to delineate the role of Gal-3 in myosin peptide-induced autoimmune myocarditis in mice. EAM was induced in relatively resistant C57BL/6J mice (wild type, WT) and in mice with a targeted deletion of Gal-3 gene (Gal-3KO) by immunization with myosin peptide MyHCα334-352. Gal-3KO mice developed more severe myocarditis and more pronounced heart hypertrophy than WT mice. Increased infiltration of CD45+ leucocytes, CD3+ T cells, F4/80+ macrophages, and eosinophils was observed in hearts of Gal-3KO mice compared to WT mice on day 21 after EAM induction. Moreover, hearts of Gal-3KO mice had more T helper type 2 (Th2) cells, alternatively activated M2 macrophages, higher amounts of IgG deposits, and higher serum levels of IL-4 and IL-33 than WT mice. Ablation of Gal-3 in Th1-dominant C57BL/6J mice that are relatively resistant to EAM resulted in more severe disease characterized by type 2 cardiac inflammation. The complex effects of Gal-3 on EAM progression might be important in the consideration of therapeutic options for the treatment of EAM.


Subject(s)
Galectin 3/metabolism , Myocarditis/immunology , Th2 Cells/immunology , Animals , Autoimmune Diseases , Cardiac Myosins/immunology , Cells, Cultured , Cytokines/metabolism , Galectin 3/genetics , Humans , Interleukin-33/blood , Interleukin-4/blood , Macrophage Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Peptides/immunology
19.
Therap Adv Gastroenterol ; 11: 1756284818793558, 2018.
Article in English | MEDLINE | ID: mdl-30159037

ABSTRACT

BACKGROUND: Dendritic cell (DC)-derived indolamine 2,3-dioxygenase (IDO) degrades tryptophan to kynurenine, which promotes conversion of inflammatory T cells in immunosuppressive regulatory T cells (Tregs). We analyzed the significance of the IDO:Treg axis for inducing and maintaining mucosal healing in ulcerative colitis (UC). METHODS: Dextran sodium sulphate (DSS)-induced colitis in BALB/c mice (model for mucosal healing) and C57BL/6 mice (model for persistent disease) was used. Serum, fecal samples and colon-infiltrating immune cells of 65 patients with UC with mucosal healing or persistent colitis were analyzed. RESULTS: Significantly higher serum levels of kynurenine and downregulated inflammatory cytokines were noticed in DSS-treated BALB/c mice compared with C57BL/6 mice. Increased IDO activity and attenuated capacity for antigen presentation and production of inflammatory cytokines, observed in BALB/c DCs, was followed by a significantly lower number of inflammatory T helper 1 (Th1) and Th17 cells and a notably increased number of Tregs in the colons of DSS-treated BALB/c mice. DCs and Tregs were crucially important for the maintenance of mucosal healing since their depletion aggravated colitis. Mucosal healing, followed by an increase in kynurenine and intestinal Tregs, was re-established when BALB/c DCs were transferred into DC-depleted or Treg-depleted DSS-treated BALB/c mice. This phenomenon was completely abrogated by the IDO inhibitor. Significantly higher serum and fecal levels of kynurenine, accompanied by an increased presence of intestinal Tregs, were noticed in patients with UC with mucosal healing and negatively correlated with disease severity, fecal calprotectin, colon-infiltrating interferon γ and interleukin-17-producing cells, serum and fecal levels of inflammatory cytokines. CONCLUSION: IDO-dependent expansion of endogenous Tregs should be further explored as a new approach for the induction and maintenance of mucosal healing in patients with UC.

20.
Front Psychiatry ; 9: 271, 2018.
Article in English | MEDLINE | ID: mdl-29988422

ABSTRACT

Schizophrenia and treatment of this disorder are often accompanied with metabolic syndrome and cardiovascular issues. Alterations in the serum level of innate immune mediators, such as interleukin-33 (IL-33) and its receptor IL-33R (ST2) and Galectin-3 (Gal-3) were observed in these conditions. Moreover, these parameters are potential prognostic and therapeutic markers. There is also accumulating evidence that these molecules play a role in neuroinflammation. Therefore, in this study we have investigated the serum level of Gal-3, IL-33 and soluble ST2 (sST2) in different stages of schizophrenia. Gal-3 levels were elevated in remission and lower in schizophrenia exacerbation in comparison with controls. Levels of IL-33 and sST2 are higher in schizophrenia exacerbation in comparison with controls and patients in remission. This initial analysis of new markers of neuroinflammation suggested their involvement in schizophrenia pathophysiology and/or cardiometabolic comorbidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...