Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sovrem Tekhnologii Med ; 15(2): 28-38, 2023.
Article in English | MEDLINE | ID: mdl-37389023

ABSTRACT

Patient-specific in vitro tumor models are a promising platform for studying the mechanisms of oncogenesis and personalized selection of drugs. In case of glial brain tumors, development and use of such models is particularly relevant as the effectiveness of such tumor treatment remains extremely unsatisfactory. The aim of the study was to develop a model of a 3D tumor glioblastoma spheroid based on a patient's surgical material and to study its metabolic characteristics by means of fluorescence lifetime imaging microscopy of metabolic coenzymes. Materials and Methods: The study was conducted with tumor samples from patients diagnosed with glioblastoma (Grade IV). To create spheroids, primary cultures were isolated from tumor tissue samples; the said cultures were characterized morphologically and immunocytochemically, and then planted into round-bottom ultra low-adhesion plates. The number of cells for planting was chosen empirically. The characteristics of the growth of cell cultures were compared with spheroids from glioblastomas of patients with U373 MG stable line of human glioblastoma. Visualization of autofluorescence of metabolic coenzymes of nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavin adenine dinucleotide (FAD) in spheroids was performed by means of an LSM 880 laser scanning microscope (Carl Zeiss, Germany) with a FLIM module (Becker & Hickl GmbH, Germany). The autofluorescence decay parameters were studied under normoxic and hypoxic conditions (3.5% О2). Results: An original protocol for 3D glioblastoma spheroids cultivation was developed. Primary glial cultures from surgical material of patients were obtained and characterized. The isolated glioblastoma cells had a spindle-shaped morphology with numerous processes and a pronounced granularity of cytoplasm. All cultures expressed glial fibrillary acidic protein (GFAP). The optimal seeding dose of 2000 cells per well was specified; its application results in formation of spheroids with a dense structure and stable growth during 7 days. The FLIM method helped to establish that spheroid cells from the patient material had a generally similar metabolism to spheroids from the stable line, however, they demonstrated more pronounced metabolic heterogeneity. Cultivation of spheroids under hypoxic conditions revealed a transition to a more glycolytic type of metabolism, which is expressed in an increase in the contribution of the free form of NAD(P)H to fluorescence decay. Conclusion: The developed model of tumor spheroids from patients' glioblastomas in combination with the FLIM can serve as a tool to study characteristics of tumor metabolism and develop predictive tests to evaluate the effectiveness of antitumor therapy.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/diagnostic imaging , NAD , Cytoplasm , Coenzymes , Hypoxia
2.
Biochemistry (Mosc) ; 84(Suppl 1): S89-S107, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31213197

ABSTRACT

Collagen is the major component of the extracellular matrix in mammals and its characteristics provide important information about the state of connective tissue. There are only few methods of label-free visualization of collagen fibers; the most frequently used is the second harmonic generation (SHG) microscopy. SHG microscopy is a non-invasive technique for the assessment of the abundance and structure of fibrillar collagen with a high resolution and specificity. At constant measurement parameters (magnification, excitation power, resolution, digital gain of registration matrix), quantitative analysis of SHG images provides a reliable characterization of collagen state. Current approaches to the SHG signal quantification are numerous and typically should be adapted to a specific task. In this review, we systematize the variety of these approaches and present the examples of biomedical application of the SHG signal quantitative analysis, as well of combined application of SHG and autofluorescence imaging.


Subject(s)
Collagen/ultrastructure , Extracellular Matrix/ultrastructure , Optical Imaging/methods , Second Harmonic Generation Microscopy/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...