Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(50): e2308933120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38064510

ABSTRACT

The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.


Subject(s)
Adenosine Triphosphate , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Adenosine Triphosphate/metabolism , Chaperonin 60/metabolism , Chaperonin 10/chemistry , Protein Folding , Protein Binding
2.
Nat Commun ; 14(1): 4171, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443175

ABSTRACT

The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action. Using an integrative structural biology approach, we determined monomeric, pre-pore and pore structures, revealing changes between structural states at high resolution. We discovered an assembly inhibition mechanism, a molecular switch that activates pre-pore oligomerization upon gut fluid incubation and solved the highest resolution MACPF pore structure to-date. Our findings demonstrate not only the utility of Mpf2Ba1 in the development of biotechnology solutions for protecting maize from WCR to promote food security, but also uncover previously unknown mechanistic principles of bacterial MACPF assembly.


Subject(s)
Coleoptera , Insecticides , Animals , Insecticides/pharmacology , Insecticides/metabolism , Zea mays/metabolism , Coleoptera/physiology , Pest Control, Biological , Plants, Genetically Modified/metabolism , Animals, Genetically Modified , Perforin/metabolism , Endotoxins/metabolism , Larva/metabolism , Insecticide Resistance
3.
Nat Commun ; 13(1): 7283, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435855

ABSTRACT

Numerous viruses package their dsDNA genome into preformed capsids through a portal gatekeeper that is subsequently closed. We report the structure of the DNA gatekeeper complex of bacteriophage SPP1 (gp612gp1512gp166) in the post-DNA packaging state at 2.7 Å resolution obtained by single particle cryo-electron microscopy. Comparison of the native SPP1 complex with assembly-naïve structures of individual components uncovered the complex program of conformational changes leading to its assembly. After DNA packaging, gp15 binds via its C-terminus to the gp6 oligomer positioning gp15 subunits for oligomerization. Gp15 refolds its inner loops creating an intersubunit ß-barrel that establishes different types of contacts with six gp16 subunits. Gp16 binding and oligomerization is accompanied by folding of helices that close the portal channel to keep the viral genome inside the capsid. This mechanism of assembly has broad functional and evolutionary implications for viruses of the prokaryotic tailed viruses-herpesviruses lineage.


Subject(s)
Bacteriophages , Virus Assembly , Cryoelectron Microscopy , Virus Assembly/genetics , Viral Proteins/metabolism , Bacteriophages/metabolism , Genome, Viral
4.
Nature ; 607(7917): 191-196, 2022 07.
Article in English | MEDLINE | ID: mdl-35732732

ABSTRACT

Bacterial conjugation is the fundamental process of unidirectional transfer of DNAs, often plasmid DNAs, from a donor cell to a recipient cell1. It is the primary means by which antibiotic resistance genes spread among bacterial populations2,3. In Gram-negative bacteria, conjugation is mediated by a large transport apparatus-the conjugative type IV secretion system (T4SS)-produced by the donor cell and embedded in both its outer and inner membranes. The T4SS also elaborates a long extracellular filament-the conjugative pilus-that is essential for DNA transfer4,5. Here we present a high-resolution cryo-electron microscopy (cryo-EM) structure of a 2.8 megadalton T4SS complex composed of 92 polypeptides representing 8 of the 10 essential T4SS components involved in pilus biogenesis. We added the two remaining components to the structural model using co-evolution analysis of protein interfaces, to enable the reconstitution of the entire system including the pilus. This structure describes the exceptionally large protein-protein interaction network required to assemble the many components that constitute a T4SS and provides insights on the unique mechanism by which they elaborate pili.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Type IV Secretion Systems , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Conjugation, Genetic , DNA/genetics , Evolution, Molecular , Fimbriae, Bacterial/metabolism , Plasmids/genetics , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/ultrastructure
5.
Sci Adv ; 8(6): eabk3147, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35148176

ABSTRACT

Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central ß sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.

6.
Mol Microbiol ; 117(2): 307-319, 2022 02.
Article in English | MEDLINE | ID: mdl-34816517

ABSTRACT

Legionella pneumophila is an opportunistic pathogen infecting alveolar macrophages and protozoa species. Legionella utilizes a Type IV Secretion System (T4SS) to translocate over 300 effector proteins into its host cell. In a recent study, we have isolated and solved the cryo-EM structure of the Type IV Coupling Complex (T4CC), a large cytoplasmic determinant associated with the inner membrane that recruits effector proteins for delivery to the T4SS for translocation. The T4CC is composed of a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module flexibly protrudes. The DotY and DotZ proteins were newly reported members of this complex and their role remained elusive. In this study, we observed the effect of deleting DotY and DotZ on T4CC stability and localization. Furthermore, we found these two proteins are co-dependent, whereby the deletion of DotY resulted in DotZ absence from the coupling complex, and vice versa. Additional cryo-EM data analysis revealed the dynamic movement of the IcmSW module is modified by the DotY/Z proteins. We therefore determined the likely function of DotY and DotZ and revealed their importance on T4CC function.


Subject(s)
Legionella pneumophila , Bacterial Proteins/metabolism , Cytoplasm/metabolism , Legionella pneumophila/chemistry , Legionella pneumophila/genetics , Type IV Secretion Systems/metabolism
7.
EMBO J ; 40(21): e108610, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34515361

ABSTRACT

Bacteria deploy weapons to kill their neighbours during competition for resources and to aid survival within microbiomes. Colicins were the first such antibacterial system identified, yet how these bacteriocins cross the outer membrane (OM) of Escherichia coli is unknown. Here, by solving the structures of translocation intermediates via cryo-EM and by imaging toxin import, we uncover the mechanism by which the Tol-dependent nuclease colicin E9 (ColE9) crosses the bacterial OM. We show that threading of ColE9's disordered N-terminal domain through two pores of the trimeric porin OmpF causes the colicin to disengage from its primary receptor, BtuB, and reorganises the translocon either side of the membrane. Subsequent import of ColE9 through the lumen of a single OmpF subunit is driven by the proton-motive force, which is delivered by the TolQ-TolR-TolA-TolB assembly. Our study answers longstanding questions, such as why OmpF is a better translocator than OmpC, and reconciles the mechanisms by which both Tol- and Ton-dependent bacteriocins cross the bacterial outer membrane.


Subject(s)
Bacteriocins/chemistry , Colicins/chemistry , Escherichia coli/metabolism , Porins/chemistry , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Binding Sites , Colicins/genetics , Colicins/metabolism , Cryoelectron Microscopy , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Porins/genetics , Porins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , Protein Transport , Thermodynamics
8.
Nat Commun ; 12(1): 5523, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535646

ABSTRACT

RNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.


Subject(s)
DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , Viruses/metabolism , Allosteric Regulation , Amino Acid Sequence , Archaeal Proteins/metabolism , Cryoelectron Microscopy , DNA/metabolism , DNA-Directed RNA Polymerases/metabolism , Models, Molecular , Protein Binding , Protein Structure, Secondary , Time Factors , Viral Proteins/metabolism , Viroids/metabolism
9.
Nat Commun ; 11(1): 2864, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513920

ABSTRACT

Legionella pneumophila is a bacterial pathogen that utilises a Type IV secretion (T4S) system to inject effector proteins into human macrophages. Essential to the recruitment and delivery of effectors to the T4S machinery is the membrane-embedded T4 coupling complex (T4CC). Here, we purify an intact T4CC from the Legionella membrane. It contains the DotL ATPase, the DotM and DotN proteins, the chaperone module IcmSW, and two previously uncharacterised proteins, DotY and DotZ. The atomic resolution structure reveals a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module protrudes. Six of these hetero-pentameric complexes may assemble into a 1.6-MDa hexameric nanomachine, forming an inner membrane channel for effectors to pass through. Analysis of multiple cryo EM maps, further modelling and mutagenesis provide working models for the mechanism for binding and delivery of two essential classes of Legionella effectors, depending on IcmSW or DotM, respectively.


Subject(s)
Bacterial Proteins/metabolism , Legionella pneumophila/metabolism , Type IV Secretion Systems/metabolism , Animals , Bacterial Proteins/chemistry , CHO Cells , Cricetulus , Models, Molecular , Mutation/genetics , Protein Interaction Maps , Protein Multimerization , Reproducibility of Results , Substrate Specificity , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/isolation & purification
11.
Nat Struct Mol Biol ; 26(1): 78-83, 2019 01.
Article in English | MEDLINE | ID: mdl-30598554

ABSTRACT

Cytochrome c oxidase (complex IV, CIV) is known in mammals to exist independently or in association with other respiratory proteins to form supercomplexes (SCs). In Saccharomyces cerevisiae, CIV is found solely in an SC with cytochrome bc1 (complex III, CIII). Here, we present the cryogenic electron microscopy (cryo-EM) structure of S. cerevisiae CIV in a III2IV2 SC at 3.3 Å resolution. While overall similarity to mammalian homologs is high, we found notable differences in the supernumerary subunits Cox26 and Cox13; the latter exhibits a unique arrangement that precludes CIV dimerization as seen in bovine. A conformational shift in the matrix domain of Cox5A-involved in allosteric inhibition by ATP-may arise from its association with CIII. The CIII-CIV arrangement highlights a conserved interaction interface of CIII, albeit one occupied by complex I in mammalian respirasomes. We discuss our findings in the context of the potential impact of SC formation on CIV regulation.


Subject(s)
Electron Transport Complex III/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron , Mitochondrial Membranes , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics
12.
Cell Rep ; 24(3): 744-754, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30021170

ABSTRACT

The centromere binding factor 3 (CBF3) complex binds the third centromere DNA element in organisms with point centromeres, such as S. cerevisiae. It is an essential complex for assembly of the kinetochore in these organisms, as it facilitates genetic centromere specification and allows association of all other kinetochore components. We determined high-resolution structures of the core complex of CBF3 alone and in association with a monomeric construct of Ndc10, using cryoelectron microscopy (cryo-EM). We identify the DNA-binding site of the complex and present a model in which CBF3 induces a tight bend in centromeric DNA, thus facilitating assembly of the centromeric nucleosome.


Subject(s)
Centromere/metabolism , Cryoelectron Microscopy , DNA, Fungal/chemistry , DNA-Binding Proteins/ultrastructure , Kinetochores/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Base Sequence , Binding Sites , DNA-Binding Proteins/chemistry , Kinetochores/chemistry , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry
13.
Cell Death Differ ; 25(8): 1517-1529, 2018 08.
Article in English | MEDLINE | ID: mdl-29416110

ABSTRACT

The pore forming, Ca2+-dependent protein, perforin, is essential for the function of cytotoxic lymphocytes, which are at the frontline of immune defence against pathogens and cancer. Perforin is a glycoprotein stored in the secretory granules prior to release into the immune synapse. Congenital perforin deficiency causes fatal immune dysregulation, and is associated with various haematological malignancies. At least 50% of pathological missense mutations in perforin result in protein misfolding and retention in the endoplasmic reticulum. However, the regulation of perforin proteostasis remains unexplored. Using a variety of biochemical assays that assess protein stability and acquisition of complex glycosylation, we demonstrated that the binding of Ca2+ to the C2 domain stabilises perforin and regulates its export from the endoplasmic reticulum to the secretory granules. As perforin is a thermo-labile protein, we hypothesised that by altering its C2 domain it may be possible to improve protein stability. On the basis of the X-ray crystal structure of the perforin C2 domain, we designed a mutation (T431D) in the Ca2+ binding loop. Mutant perforin displayed markedly enhanced thermal stability and lytic function, despite its trafficking from the endoplasmic reticulum remaining unchanged. Furthermore, by introducing the T431D mutation into A90V perforin, a pathogenic mutation, which results in protein misfolding, we corrected the A90V folding defect and completely restored perforin's cytotoxic function. These results revealed an unexpected role for the Ca2+-dependent C2 domain in maintaining perforin proteostasis and demonstrated the possibility of designing perforin with supra-physiological cytotoxic function through stabilisation of the C2 domain.


Subject(s)
Apoptosis , Perforin/metabolism , Animals , Calcium/chemistry , Calcium/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Endoplasmic Reticulum/metabolism , Mice , Mutagenesis, Site-Directed , Perforin/genetics , Protein Domains , Protein Folding , Protein Stability , Protein Structure, Tertiary , Protein Transport , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transition Temperature
14.
J Struct Biol ; 199(3): 225-236, 2017 09.
Article in English | MEDLINE | ID: mdl-28827185

ABSTRACT

This paper provides an overview of the discussion and presentations from the Workshop on the Management of Large CryoEM Facilities held at the New York Structural Biology Center, New York, NY on February 6-7, 2017. A major objective of the workshop was to discuss best practices for managing cryoEM facilities. The discussions were largely focused on supporting single-particle methods for cryoEM and topics included: user access, assessing projects, workflow, sample handling, microscopy, data management and processing, and user training.


Subject(s)
Cryoelectron Microscopy , Research/organization & administration , Cryoelectron Microscopy/instrumentation , Workflow
15.
Nat Nanotechnol ; 12(5): 467-473, 2017 05.
Article in English | MEDLINE | ID: mdl-28166206

ABSTRACT

Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.


Subject(s)
Erythrocyte Membrane , Nanopores/ultrastructure , Pore Forming Cytotoxic Proteins , Animals , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/ultrastructure , Mice , Microscopy, Atomic Force , Microscopy, Electron , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Sheep
16.
J Cell Sci ; 129(11): 2125-33, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27179071

ABSTRACT

The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane ß-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation.


Subject(s)
Cholesterol/metabolism , Complement Membrane Attack Complex/metabolism , Cytotoxins/metabolism , Perforin/metabolism , Animals , Complement Membrane Attack Complex/chemistry , Cytotoxins/chemistry , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Perforin/chemistry
17.
Nat Commun ; 7: 10588, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26841934

ABSTRACT

The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming ß-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.


Subject(s)
Complement C9/ultrastructure , Complement Membrane Attack Complex/ultrastructure , Polymers , Cryoelectron Microscopy , Humans , Models, Molecular , Molecular Structure
18.
PLoS Biol ; 13(2): e1002049, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25654333

ABSTRACT

Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central ß-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane ß-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of ß-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into ß-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted ß-barrel. The intermediate structures of the MACPF domain during refolding into the ß-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.


Subject(s)
Cell Membrane/chemistry , Complement Membrane Attack Complex/chemistry , Fungal Proteins/chemistry , Hemolysin Proteins/chemistry , Pleurotus/chemistry , Recombinant Fusion Proteins/chemistry , Animals , Complement Membrane Attack Complex/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Erythrocytes/chemistry , Erythrocytes/cytology , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Models, Molecular , Protein Binding , Protein Folding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sheep
19.
Elife ; 3: e04247, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25457051

ABSTRACT

Membrane attack complex/perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins constitute a major superfamily of pore-forming proteins that act as bacterial virulence factors and effectors in immune defence. Upon binding to the membrane, they convert from the soluble monomeric form to oligomeric, membrane-inserted pores. Using real-time atomic force microscopy (AFM), electron microscopy (EM), and atomic structure fitting, we have mapped the structure and assembly pathways of a bacterial CDC in unprecedented detail and accuracy, focussing on suilysin from Streptococcus suis. We show that suilysin assembly is a noncooperative process that is terminated before the protein inserts into the membrane. The resulting ring-shaped pores and kinetically trapped arc-shaped assemblies are all seen to perforate the membrane, as also visible by the ejection of its lipids. Membrane insertion requires a concerted conformational change of the monomeric subunits, with a marked expansion in pore diameter due to large changes in subunit structure and packing.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Hemolysin Proteins/metabolism , Perforin/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Computer Systems , Cryoelectron Microscopy , Diffusion , Disulfides/metabolism , Kinetics , Microscopy, Atomic Force , Models, Molecular , Negative Staining , Protein Multimerization
20.
Biochem J ; 456(3): 323-35, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24070258

ABSTRACT

Following its secretion from cytotoxic lymphocytes into the immune synapse, perforin binds to target cell membranes through its Ca(2+)-dependent C2 domain. Membrane-bound perforin then forms pores that allow passage of pro-apoptopic granzymes into the target cell. In the present study, structural and biochemical studies reveal that Ca(2+) binding triggers a conformational change in the C2 domain that permits four key hydrophobic residues to interact with the plasma membrane. However, in contrast with previous suggestions, these movements and membrane binding do not trigger irreversible conformational changes in the pore-forming MACPF (membrane attack complex/perforin-like) domain, indicating that subsequent monomer-monomer interactions at the membrane surface are required for perforin pore formation.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Phospholipids/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Calcium/chemistry , Cell Membrane/chemistry , Cell Membrane/genetics , Humans , Jurkat Cells , K562 Cells , Mice , Mice, Knockout , Phospholipids/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Protein Structure, Tertiary , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...