Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Language
Publication year range
1.
An Acad Bras Cienc ; 89(3): 1555-1564, 2017.
Article in English | MEDLINE | ID: mdl-28954173

ABSTRACT

Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with ß-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with ß-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antidiarrheals/pharmacology , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Maytenus/chemistry , Pentacyclic Triterpenes/pharmacology , Plant Extracts/pharmacology , Anti-Bacterial Agents/isolation & purification , Antidiarrheals/isolation & purification , Antiviral Agents/isolation & purification , Cell Line , Maytenus/classification , Pentacyclic Triterpenes/isolation & purification
2.
An. acad. bras. ciênc ; 89(3): 1555-1564, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-886762

ABSTRACT

ABSTRACT Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with β-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with β-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.


Subject(s)
Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Maytenus/chemistry , Dengue Virus/drug effects , Pentacyclic Triterpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Antidiarrheals/pharmacology , Antiviral Agents/isolation & purification , Cell Line , Maytenus/classification , Pentacyclic Triterpenes/isolation & purification , Anti-Bacterial Agents/isolation & purification , Antidiarrheals/isolation & purification
3.
Int J Pharm ; 421(1): 24-33, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-21963467

ABSTRACT

Sertraline (SRT) is a widely used antidepressant whose poor solubility in water limits its oral applicability. Thus, the aim of this work was the evaluation of a multi-equilibrium system based on ß-cyclodextrin (ßCD) and SRT. The inclusion compounds (ICs) were investigated by infrared spectroscopy, isothermal titration calorimetry (ITC) and (1)H and 2D ROESY nuclear magnetic resonance experiments. SRT solubility was predicted in vitro in water and biomimetic fluids. The SRT in presence of ßCD at 1:1 and 1:2 molar ratios was more soluble than free SRT in all biomimetics media investigated. The FTIR-HATR showed that ßCD νC-O-C stretching band was reduced in presence of SRT, suggesting the interactions between them. Additionally, titration process and Job's plot provided information on the ICs stoichiometry and evidenced the multi-equilibrium coexistence in aqueous solution. According to the ITC, SRT:ßCD interaction process was spontaneous and exothermic with a high affinity binding constant (K=14,726 M(-1)). Additionally, the stoichiometry coefficient (n) was 1.63, which was comparable to that found by FITR-HATR. The (1)H and 2D ROESY verified multiple SRT sites included into the host cavity. Theoretical calculations depicted the relative energy of different proposed ICs structures, in which the 1:2 IC was the most stable.


Subject(s)
Antidepressive Agents/chemistry , Sertraline/chemistry , beta-Cyclodextrins/chemistry , Calorimetry , Freeze Drying , Magnetic Resonance Spectroscopy , Solubility , Solutions , Spectroscopy, Fourier Transform Infrared
4.
AAPS PharmSciTech ; 10(1): 235-42, 2009.
Article in English | MEDLINE | ID: mdl-19280349

ABSTRACT

The present study was designed to investigate the influence of operating conditions (temperature, stirring time, and excess amount of quercetin) on the complexation of quercetin with beta-cyclodextrin using a 2(3) factorial design. The highest aqueous solubility of quercetin was reached under the conditions 37 degrees C/24 h/6 mM of quercetin. The stoichiometric ratio (1:1) and the apparent stability constant (Ks = 230 M(-1)) of the quercetin/beta-cyclodextrin complex were determined using phase-solubility diagrams. The semi-industrial production of a 1:1 quercetin/beta-cyclodextrin solid complex was carried out in aqueous solution followed by spray-drying. Although the yield of the spray-drying process was adequate (77%), the solid complex presented low concentration of quercetin (0.14%, w/w) and, thus, low complexation efficiency. The enhancement of aqueous solubility of quercetin using this method was limited to 4.6-fold in the presence of 15 mM of beta-cyclodextrin. Subsequently, an inclusion complex was prepared via physical mixture of quercetin with beta-cyclodextrin (molar ratio of 1:1 and quercetin concentration of 23% (w/w)) and characterized using infrared spectroscopy, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, and scanning electron microscopy analyses. The enhancement of aqueous solubility of quercetin using this method was 2.2-fold, similar to that found in the complex prepared in aqueous solution before the spray-drying process (2.5-fold at a molar ratio of 1:1, i.e., 6 mM of quercetin and 6 mM of beta-cyclodextrin).


Subject(s)
Quercetin/chemistry , Technology, Pharmaceutical/methods , beta-Cyclodextrins/chemistry , Calorimetry, Differential Scanning , Desiccation , Drug Stability , Kinetics , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Models, Chemical , Solubility , Spectrophotometry, Infrared , Surface Properties , Temperature
5.
Int J Pharm ; 367(1-2): 133-9, 2009 Feb 09.
Article in English | MEDLINE | ID: mdl-18955122

ABSTRACT

Dioclein is a flavonoid reported to have many beneficial effects on the cardiovascular system such as vasorelaxant, hypotensive, antioxidant and antiarrythmogenic activities. However, use as pharmaceuticals is limited due to the lack of oral activity and low water solubility. In this work, intending to improve its oral activity, we performed a 1:1 inclusion complex (IC) between dioclein and beta-cyclodextrin (beta-CD). The IC was characterized by nuclear magnetic resonance and infrared spectroscopy and its vasodilator and hypotensive effects were evaluated in mice. The inclusion of dioclein in beta-CD increased the water solubility 44% compared to free dioclein. The IC (2.5mgkg(-1)) produced a higher and long lasting change in systolic blood pressure (SBP) after intraperitoneal administration compared to free dioclein. When given orally, free dioclein (10mgkg(-1)) showed no hypotensive effect while the IC induced a pronounced decrease in SBP. The in vitro vasodilator effect of dioclein was unchanged by its inclusion in beta-CD showing that the IC does not change the interaction between dioclein and its cellular targets. In conclusion, our results show that the new complex prepared by inclusion of dioclein in beta-CD improves the hypotensive effect of the flavonoid by increasing its bioavailability and enables dioclein to be effective after oral administration. The mechanism underling the increase in bioavailability is probably a consequence of a protective effect of beta-CD against in vivo biodegradation by enzymes and possibly increased water solubility.


Subject(s)
Adjuvants, Pharmaceutic/chemistry , Flavanones/administration & dosage , Vasodilator Agents/administration & dosage , beta-Cyclodextrins/chemistry , Administration, Oral , Animals , Biological Availability , Blood Pressure/drug effects , Flavanones/chemistry , Flavanones/pharmacokinetics , Flavanones/pharmacology , Magnetic Resonance Spectroscopy , Male , Mesenteric Arteries/drug effects , Mice , Solubility , Spectroscopy, Fourier Transform Infrared , Vascular Resistance/drug effects , Vasodilation/drug effects , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacokinetics , Vasodilator Agents/pharmacology
6.
J Am Chem Soc ; 130(26): 8426-36, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-18529008

ABSTRACT

The supramolecular interactions between Imipramine hydrochloride (IMI), a tricyclic antidepressant, and beta-cyclodextrin (betaCD) have been investigated by experimental techniques and theoretical calculations. The association between these molecules might be lead to a host/guest compound, in which the physical chemistry properties of the guest molecule, such as high solubility, can be decreased. These new properties acquired by the inclusion phenomena are important to develop a strategy for pharmaceutical formulation. Nuclear magnetic resonance and horizontal attenuated total reflectance provided relevant information on the complex stoichiometries and the sites of interactions between the host and guest molecules. Stoichiometries of 1:2, 1:1, and 2:1 betaCD/IMI have been detected in solution. Self-diffusion coefficient and dynamic light scattering analysis provided information on the self-aggregation of the complex. Also, isothermal titration calorimetry studies indicated the existence of equilibrium between different complexes in solution. In order to determine the preferred arrangement for the inclusion complex formed by the IMI molecule and betaCD, theoretical calculations were performed. Of all proposed supramolecular structures, the 2:1 betaCD/IMI complex was calculated to be the most energetically favorable, in both gas and aqueous phases. The calculations indicated that the intermolecular hydrogen bonds involving the hydroxyl groups of betaCD play a major role in stabilizing the supramolecular 2:1 structure, corroborating experimental findings.

7.
Int J Pharm ; 353(1-2): 160-9, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18255241

ABSTRACT

In this work the complex formed between beta-cyclodextrin (betaCD) and fluoxetine (FLU) was investigated by experimental and computational methods. From Horizontal Attenuated Total Reflectance (HATR) was possible to verify a strong modification in the vibrational modes of betaCD and FLU, indicating interactions between them. The Nuclear Magnetic Resonance (NMR) experiments confirm these interactions through the change in chemical shifts in (1)H spectra, reduction in longitudinal relaxation times values, and the Nuclear Ouverhauser Effect confirm the inclusion of aromatic rings of FLU into the betaCD. The structures of the proposed inclusion compounds were optimized at PM3 semiempirical level of theory. In addition, single point calculations at the Density Functional Theory (DFT) level, using the Becke, Lee, Yang, and Parr functional and 6-31G(d,p) basis set, were used to determine the interaction energy for these structures. The DFT calculations identified the aromatic ring, which contains the CF(3) group as the most stable into the betaCD by an amount of, 11.7 kcal mol(-1), in the gas phase. Polarized continuum model, at the DFT level mentioned, was used to investigate the solvent effect, and the results corroborated the gas phase analysis. A high equilibrium constant (K approximately 6921+/-316) and the stoichiometry, 1:1, were obtained by Isothermal Titration Calorimetry (ITC) experiments.


Subject(s)
Fluoxetine/chemistry , beta-Cyclodextrins/chemistry , Fluoxetine/administration & dosage , Magnetic Resonance Spectroscopy , Refractometry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , beta-Cyclodextrins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL