Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Plant Physiol ; 246-247: 153092, 2020.
Article in English | MEDLINE | ID: mdl-32065919

ABSTRACT

The mechanisms regulating, and modulating potato wound-healing processes are of great importance in reducing tuber infections, reducing shrinkage and maintaining quality and nutritional value for growers and consumers. Wound-induced changes in tuber polyamine metabolism have been linked to the modulation of wound healing (WH) and in possibly providing the crucial amount of H2O2 required for suberization processes. In this investigation we determined the effect of inhibition of specific steps within the pathway of polyamine metabolism on polyamine content and the initial accumulation of suberin polyphenolics (SPP) during WH. The accumulation of SPP represents a critical part of the beginning or inchoate phase of tuber WH during closing-layer formation because it serves as a barrier to bacterial infection and is a requisite for the accumulation of suberin polyaliphatics which provide the barrier to fungal infection. Results showed that the inhibitor treatments that caused changes in polyamine content generally did not influence wound-induced accumulation of SPP. Such lack of correlation was found for inhibitors involved in metabolism and oxidation of putrescine (arginine decarboxylase, ornithine decarboxylase, and diamine oxidase). However, accumulation of SPP was dramatically reduced by treatment with guazatine, a potent inhibitor of polyamine oxidase (PAO), and methylglyoxal-bis(guanylhydrazone), a putative inhibitor of S-adenosylmethione decarboxylase which may also cross-react to inhibit PAO. The mode of action of these inhibitors is presumed to be blockage of essential H2O2 production within the WH cell wall. These results are of great importance in understanding the mechanisms modulating WH and ultimately controlling related infections and associated postharvest losses.


Subject(s)
Diamines/antagonists & inhibitors , Lipids/biosynthesis , Plant Proteins/metabolism , Plant Tubers/metabolism , Polyamines/antagonists & inhibitors , Solanum tuberosum/metabolism , Carboxy-Lyases/metabolism , Diamines/metabolism , Guanidines/metabolism , Mitoguazone/metabolism , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Polyamines/metabolism , Putrescine/metabolism , Solanum tuberosum/enzymology , Polyamine Oxidase
2.
Front Plant Sci ; 8: 861, 2017.
Article in English | MEDLINE | ID: mdl-28596778

ABSTRACT

Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L.), the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root storage and that changes in glycolysis are closely related to changes in sugarbeet root respiration.

3.
Plant Signal Behav ; 11(12): e1256531, 2016 12.
Article in English | MEDLINE | ID: mdl-27831001

ABSTRACT

The two stages of potato tuber wound healing, closing layer formation (CLF) and wound periderm formation (WPF), have critical biological differences. The first stage, CLF, involves early induction of DNA synthesis and nuclear division in the absence of cell division. The transition phase from CLF to the second stage, WPF, is marked by a transient decrease in expression of suberin-specific genes. The second stage involves cell division. Although biologically active cytokinins (CKs) are not present in quantifiable amounts during this stage, the presence of precursor and catabolic products suggest the presence of trace amounts of active CKs that, in conjunction with increased auxin (indole acetic acid), provide necessary signals for meristematic activity. Augmenting these putative trace amounts with exogenous biologically active CK inhibits WPF; this suggests that the CK requirements for meristematic activity are finely controlled and sensitive to extremely low concentrations. Evidence is discussed for separate biological processes and signals that distinguish the 2 stages of wound healing.


Subject(s)
Plant Tubers/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Tubers/physiology , S Phase
4.
Front Plant Sci ; 7: 499, 2016.
Article in English | MEDLINE | ID: mdl-27148322

ABSTRACT

Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12°C for 28 days. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12°C, transpiration rate from the wounded surface declined within 14 days and wounded roots lost weight at a rate similar to unwounded controls. At 6°C, transpiration rate from the wounded surface did not decline in the 28 days after injury, and wounded roots lost 44% more weight than controls after 28 days storage. Melanin formation, lignification, and suberization occurred more rapidly at 12°C than at 6°C, and a continuous layer of lignified and suberized cells developed at 12°C, but not at 6°C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12°C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12°C than at 6°C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12°C, and over 28 days, the increase in respiration due to injury was 52% greater in roots stored at 6°C than in roots stored at 12°C. The data indicate that storage at 6°C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12°C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled too quickly.

5.
J Plant Physiol ; 191: 22-8, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26708026

ABSTRACT

Cytokinin, auxin and gibberellin contents in resting and wound-responding potato tubers have not been fully determined and coordinated with wound-healing processes. Using a well-defined wound-healing model system, hormone content and expression of genes associated with hormone turnover were determined in tubers following wounding. Changes in hormone content were coordinated with: (I) formation and completion of the wound closing layer (0-5/6 days), and (II) initiation of phellogen and wound periderm formation (∼ 7 days). Quantifiable amounts of biologically active cytokinins (Z, DZ and IP) were not detected in resting or wound-responding tubers. However, the precursor IPA and catabolic product c-ZOG were found in small amounts in resting and wound-responding tubers. Wound-induced activation of cytokinin biosynthesis was suggested by an increase in t-ZR and c-ZR content at 0.5 days and large increases in IPA and c-ZR content by 3 days and throughout 7 days after wounding suggesting roles in II, but little or no role in I. Expression of key genes involved in cytokinin metabolism followed similar profiles with transcripts decreasing through 3 days and then increasing at 5-7 days after wounding. Both free IAA and IAA-Asp were present in resting tubers. While IAA-Asp was no longer present by 3 days after wounding, IAA content nearly doubled by 5 days and was more than 4-fold greater at 7 days compared to that in resting tuber (0 day) suggesting roles in II, but little or no role in I. Gibberellins were not present in quantifiable amounts in resting or wound-responding tubers. These results suggest that bio-active cytokinins are wound-induced, but their residency is temporal and highly regulated. The transient presence of active cytokinins and corresponding increases in IAA content strongly suggest their involvement in the regulation of wound periderm development. The absence of gibberellins indicates that they are not a regulatory component of wound-healing processes.


Subject(s)
Cytokinins/metabolism , Gibberellins/biosynthesis , Indoleacetic Acids/metabolism , Plant Tubers/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Oxidoreductases/genetics , Oxidoreductases/metabolism , Solanum tuberosum/enzymology , Solanum tuberosum/genetics
6.
J Plant Physiol ; 176: 89-95, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25577734

ABSTRACT

Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) are involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber wound responses. However, the time course of wound-induced changes in tuber PA content, activity of key biosynthetic enzymes and associated gene expression has not been determined and coordinated with major wound-healing processes. The objective of this study was to determine these wound-induced changes and their coordination with wound-healing processes. Wounding induced increases in putrescine (Put) and spermidine (Spd), but had only minor effects on spermine (Spm) content during the 168 h time course which encompassed the initiation and completion of the closing layer formation, and the initiation of cell division and wound periderm formation. As determinants of the first committed step in PA biosynthesis, arginine and ornithine decarboxylase (ADC and ODC, respectively) activities were below levels of detectability in resting tubers and expression of genes encoding these two enzymes was low. Within 6h of wounding, increases in the in vitro activities of ADC and ODC and expression of their cognate genes were observed. Expression of a gene encoding S-adenosylmethionine decarboxylase, required for Spd and Spm biosynthesis, was also increased 6h after wounding and remained elevated throughout the time course. Expression of a polyamine catabolic gene, encoding polyamine oxidase, was down-regulated after wounding. Results indicated a rapid wound-induced increase in PA biosynthesis during closing layer formation and the time of nuclei entry and exit from S-phase. PA content remained elevated as wound-induced cells became meristematic and initiated formation of the wound periderm suggesting sustained involvement in wound-healing.


Subject(s)
Gene Expression Regulation, Plant , Metabolic Networks and Pathways/genetics , Plant Tubers/enzymology , Plant Tubers/genetics , Polyamines/metabolism , Solanum tuberosum/enzymology , Solanum tuberosum/genetics , Carboxy-Lyases/metabolism , Genes, Plant , Ornithine Decarboxylase/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Real-Time Polymerase Chain Reaction , Polyamine Oxidase
7.
J Plant Physiol ; 171(17): 1571-5, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25151125

ABSTRACT

Tuber wounding induces a cascade of biological responses that are involved in processes required to heal and protect surviving plant tissues. Little is known about the coordination of these processes, including essential wound-induced DNA synthesis, yet they play critical roles in maintaining marketability of the harvested crop and tubers cut for seed. A sensitive "Click-iT EdU Assay" employing incorporation of the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), in conjunction with 4',6-diamindino-2-phenylindole (DAPI) counter labeling, was employed to objectively identify and determine the time course and spatial distribution of tuber nuclei that were wound-induced to enter S-phase of the cell cycle. Both labeling procedures are rapid and sensitive in situ. Following wounding, EdU incorporation (indicating DNA synthesis) was not detectable until after 12h, rapidly reached a maximum at about 18h and then declined to near zero at 48h. About 28% of the nuclei were EdU labeled at 18h reflecting the proportion of cells in S-phase of the cell cycle. During the ∼30h in which induced cells were progressing through S-phase, de novo DNA synthesis extended 7-8 cell layers below the wound surface. Cessation of nuclear DNA synthesis occurred about 4 d prior to completion of wound closing layer formation. Initiation of wound periderm development followed at 7 d, i.e. about 5 d after cessation of nuclear DNA biosynthesis; at this time the phellogen developed and meristematic activity was detected via the production of new phellem cells. Collectively, these results provide new insight into the coordination of wound-induced nucleic acid synthesis with associated tuber wound-healing processes.


Subject(s)
DNA, Plant/metabolism , Gene Expression Regulation, Plant , Plant Tubers/physiology , Solanum tuberosum/physiology , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA, Plant/genetics , Indoles , Kinetics , Models, Biological , Organ Specificity , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/cytology , Plant Tubers/genetics , S Phase , Solanum tuberosum/cytology , Solanum tuberosum/genetics , Staining and Labeling , Time Factors , Wounds and Injuries
8.
J Plant Physiol ; 170(6): 560-6, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23290537

ABSTRACT

The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato tubers. An increase in ABA and ABA metabolite content was observed 48h after wounding and remained elevated through 96h. Wounding induced dramatic increases in the expression of the ABA metabolic genes encoding zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), and ABA-8'-hydroxylase. Although the patterns of wound-induced expression of individual genes varied, increased gene expression was observed within 3h of wounding and remained elevated through 96h. An apparent correlation between expression of the gene encoding ZEP and the increase in ABA content suggested that the wound-induced increase in ABA biosynthesis was regulated by both substrate availability and increased NCED activity. Suppression of wound-induced jasmonic acid accumulation by rinsing the wounded tissue with water did not inhibit the subsequent increase in ABA content. Exogenous ethylene completely suppressed the wound-induced increase in ABA content and dramatically reduced wound-induced up-regulation of ABA metabolic genes. This study is the first to identify the molecular bases for increased ABA accumulation following physical trauma in potato tubers and highlights the complex physiological interactions between various wound-induced hormones.


Subject(s)
Gene Expression Regulation, Plant , Plant Growth Regulators/genetics , Plant Tubers/physiology , Solanum tuberosum/genetics , Abscisic Acid/genetics , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ethylenes/metabolism , Metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Solanum tuberosum/metabolism
9.
J Plant Physiol ; 170(4): 413-23, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23246026

ABSTRACT

Mature native periderm that exhibits resistance to excoriation (RE) is the primary defense for potato tubers against abiotic and biotic challenges. However, little is known about the physiology of periderm maturation and associated gene expressions. In this study, periderm maturation events and associated gene expressions were determined in tubers of two diverse potato genotypes (NDTX4271-5R (ND) and Russet Burbank (RB); 2008 and 2009 crops) at four harvest maturities ranging from immature (non-senesced vines and low RE) to mature (senesced vines and high RE). Approximately 104 d after planting, the fine balance of accumulation and loss of periderm phellem cell layers showed signs of subsiding, indicating cessation of cell division by the phellogen. Phellogen radial cell walls thickened as periderm matured throughout the harvests, increasing RE/skin-set. In both genotypes, the cell cycle gene cyclin-dependent kinase B (StCDKB) rapidly down-regulated after the second harvest coinciding with apparent cessation of cell division. Expression patterns of genes encoding epidermal growth factor binding protein (StEBP) and cyclin-dependent kinase regulatory subunit (StCKS1At) were less indicative of phellogen inactivation and periderm maturation. Genes encoding the structural cell wall proteins extensin (StExt1) for ND and extensin-like (StExtlk) for ND and RB remained up-regulated respectively by the second harvest, suggesting involvement with completion of phellem cell accumulation and on-set of periderm maturation. The expression of genes encoding pectin methyl esterase (StPME), StExt1 and a cell wall strengthening "tyrosine-and lysine-rich protein" (StTLRP) increased in phellogen cells from later harvests of ND tubers, but were down regulated in RB tubers; this suggests roles in phellem cell generation and completion of delayed cell wall development in non-meristematic phellogen cells of ND, a red skinned phenotype. StCDKB and StPrePME genes were rapidly down-regulated by the third harvest for both genotypes. Collectively, these results suggest that down-regulation of these genes coordinates with on-set of periderm maturation and skin-set progression.


Subject(s)
Plant Development/genetics , Plant Epidermis/cytology , Plant Epidermis/growth & development , Plant Tubers/cytology , Plant Tubers/growth & development , Solanum tuberosum/growth & development , Solanum tuberosum/genetics , Cell Differentiation/genetics , Cell Division/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype
10.
J Plant Physiol ; 169(6): 586-95, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22251796

ABSTRACT

Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more influenced by harvest than genotype. Importantly, StTLRP was the only gene examined that may be involved in phellogen cell wall thickening after cessation of phellogen cell division.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Cell Cycle/genetics , Cell Wall/enzymology , Plant Proteins/genetics , Plant Tubers/enzymology , Solanum tuberosum/cytology , Solanum tuberosum/enzymology , Carboxylic Ester Hydrolases/metabolism , Cell Wall/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genotype , Lipids , Plant Proteins/metabolism , Plant Tubers/cytology , Plant Tubers/genetics , Polyphenols/metabolism , Solanum tuberosum/genetics
11.
Planta ; 232(6): 1433-45, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20839005

ABSTRACT

Wounding of potato (Solanum tuberosum L.) tubers induces the development of a suberized closing layer and wound periderm that resists desiccation and microbial invasion. Wound-healing ability declines with tuber age (storage period). The mechanism of loss in healing capacity with age is not known; however, upregulation of superoxide production, increased ABA biosynthesis and phenylalanine ammonia lyase (PAL) activity in response to wounding are processes critical to the development of a suberized closing layer and wound periderm. Therefore, the role of ABA in modulating the age-induced loss of wound-healing ability of tubers was examined. Non-wounded older tubers had 86% less ABA (dry matter basis) than younger tubers. PAL transcript increased in younger tubers within 24 h of wounding, but transcription was delayed by 5 days in older tubers. Wound-induced PAL activity increased more rapidly in younger than older tubers. ABA treatment increased PAL expression and activity in tissue from both ages of tubers and restored the 24 h transcription time line in older tubers. Moreover, ABA treatment of wounded older tubers enhanced their resistance to water vapor loss following a 6-day wound-healing period. Wound-induced accumulation of suberin poly(phenolic(s)) (SPP) and suberin poly(aliphatic(s)) (SPA) was measurably slower in older versus younger tubers. ABA treatment hastened SPP accumulation in older tubers to match that in younger tubers, but only enhanced SPA accumulations over the initial 4 days of healing. Age-induced loss of wound-healing ability is thus partly due to reduced ability to accumulate ABA and modulate the production of SPP through PAL in response to wounding and to dysfunction in the downstream signaling events that couple SPA biosynthesis and/or deposition to ABA. ABA treatment partly restored the healing ability of older tubers by enhancing the accumulation of SPP without restoring wound-induced superoxide forming ability to the level of younger tubers. The coupling of phenolic monomers into the poly(phenolic) domain of suberin was therefore not limited by the diminished wound-induced superoxide production of older tubers.


Subject(s)
Abscisic Acid/metabolism , Solanum tuberosum/physiology , Phenylalanine Ammonia-Lyase/metabolism , Solanum tuberosum/enzymology , Solanum tuberosum/metabolism , Superoxides/metabolism
12.
Plant Signal Behav ; 4(7): 620-2, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19820323

ABSTRACT

The induction and regulation of wound-healing (WH) processes in potato tubers and other vegetables are of great nutritional and economic importance. The rapid accumulation of waxes to restrict water vapor loss and formation of suberin barriers to block infection are crucial components of WH. Recently we determined the regulatory involvement of abscisic acid (ABA) and ethylene in WH. In this addendum we integrate and interpret features from this recent research with additional information on ABA and data on the association of jasmonic acid (JA) in tuber WH. Results show that wounding dramatically increased tuber ethylene production and ABA and JA content. Blockage of wound-induced ABA biosynthesis and ethylene action/biosynthesis showed that ABA is a potent regulator in reduction of water vapor loss and hastening of suberization while ethylene had no discernable effect. The collective results also imply that ethylene has no effect on ABA regulation of WH. JA content in dormant and non-dormant mini-tubers is very low (< or = l ng gFW(-1)) but rapidly increases upon wounding then decreases, all before wound-induced ABA or ethylene accumulation reach their maxima. Results gathered to date do not support a role for ethylene in potato tuber WH but do implicate ABA in this process. Although JA content increases rapidly after wounding, its role in tuber WH remains speculative.

13.
J Exp Bot ; 59(6): 1175-86, 2008.
Article in English | MEDLINE | ID: mdl-18356146

ABSTRACT

Rapid wound-healing is crucial in protecting potato tubers from infection and dehydration. Wound-induced suberization and the accumulation of hydrophobic barriers to reduce water vapour conductance/loss are principal protective wound-healing processes. However, little is known about the cognate mechanisms that effect or regulate these processes. The objective of this research was to determine the involvement of abscisic acid (ABA) in the regulation of wound-induced suberization and tuber water vapour loss (dehydration). Analysis by liquid chromatography-mass spectrometry showed that ABA concentrations varied little throughout the tuber, but were slightly higher near the periderm and lowest in the pith. ABA concentrations increase then decrease during tuber storage. Tuber wounding induced changes in ABA content. ABA content in wound-healing tuber discs decreased after wounding, reached a minimum by 24 h, and then increased from the 3rd to the 7th day after wounding. Wound-induced ABA accumulations were reduced by fluridone (FLD); an inhibitor of de novo ABA biosynthesis. Wound-induced phenylalanine ammonia lyase activity was slightly reduced and the accumulation of suberin poly(phenolics) and poly(aliphatics) noticeably reduced in FLD-treated tissues. Addition of ABA to the FLD treatment restored phenylalanine ammonia lyase activity and suberization, unequivocally indicating that endogenous ABA is involved in the regulation of these wound-healing processes. Similar experiments showed that endogenous ABA is involved in the regulation of water vapour loss, a process linked to wax accumulation in wound-healing tubers. Rapid reduction of water vapour loss across the wound surface is essential in preventing desiccation and death of cells at the wound site; live cells are required for suberization. These results unequivocally show that endogenous ABA is involved in the regulation of wound-induced suberization and the processes that protect surface cells from water vapour loss and death by dehydration.


Subject(s)
Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Tubers/physiology , Solanum tuberosum/physiology , Abscisic Acid/antagonists & inhibitors , Phenylalanine Ammonia-Lyase/metabolism , Plant Growth Regulators/antagonists & inhibitors , Plant Proteins/metabolism , Plant Transpiration/drug effects , Plant Tubers/cytology , Pyridones/pharmacology
14.
Ann Bot ; 90(1): 1-10, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12125762

ABSTRACT

Maturation of potato (Solanum tuberosum L.) tuber native and wound periderm and development of resistance to periderm abrasion were investigated utilizing cytological and histochemical techniques. Both native and wound periderm consist of three different tissues: phellem, phellogen and phelloderm. It was previously determined that the phellogen walls of immature native periderm are thin and prone to fracture during harvest, leading to periderm abrasion (excoriation). Phellogen walls thicken and become less susceptible to fracture upon maturation of the periderm, leading to resistance to excoriation. We now demonstrate that phellogen cells of immature wound periderm also have thin radial walls and that wound periderm abrasion is due to fracture of these walls. Maturation of the wound periderm is also associated with an increase in the thickness of the phellogen radial walls. Histological analysis with ruthenium red and hydroxylamine-FeCI2, which stain unesterified and highly methyl-esterified pectins, respectively, indicates that the phellogen cell walls of native and wound periderm differ significantly regardless of the stage of maturity. Results obtained by staining with ruthenium red and hydroxylamine-FeCI2 imply that phellogen cell walls of immature native periderm contain methyl-esterified pectin, but are lacking in unesterified (acidic) pectins. Maturation of native periderm is accompanied by an apparent increase in unesterified pectins in the walls of phellogen cells, which may allow for the strengthening of phellogen cell walls via calcium pectate formation. Histological staining of the phellogen walls of wound periderm, on the other hand, implies that these walls are deficient in pectins. Moreover, maturation of wound periderm is not accompanied by an increase in unesterified pectins in these walls. Since peroxidase is known to catalyse the cross-linking of cell wall polymers, we stained native and wound periderm for the presence of peroxidase utilizing guaiacol as a substrate. Peroxidase staining was strong in the phellogen walls of both immature and mature native periderm and we could not detect any differences in staining between them. Peroxidase staining was weak in the phellogen walls of immature wound periderm and was not detectably different in mature wound periderm. Peroxidase data imply that there are distinct differences between native and wound periderm, though our data do not indicate that changes in peroxidase activity are involved in the development of resistance to periderm abrasion that occurs upon maturation of the periderm. However, we cannot rule out the involvement in this process of peroxidase isozymes that have low affinity for the substrates utilized here.


Subject(s)
Solanum tuberosum/cytology , Microscopy , Pectins/metabolism , Solanum tuberosum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...