Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520561

ABSTRACT

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Subject(s)
Developmental Disabilities , RNA Polymerase III , Transcription Factors, TFIII , Animals , Child , Child, Preschool , Female , Humans , Male , Alleles , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Intellectual Disability/genetics , Mutation , Pedigree , Phenotype , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Transcription Factors, TFII/genetics , Transcription Factors, TFII/metabolism , Transcription Factors, TFIII/genetics , Transcription Factors, TFIII/metabolism , Transcription, Genetic , Zebrafish/genetics
2.
J Genet Couns ; 33(1): 151-155, 2024 02.
Article in English | MEDLINE | ID: mdl-38197609

ABSTRACT

The need for education focusing on genomic technologies and variant interpretation for genetic counseling trainees has prompted genetic counseling training programs to alter their curricula to incorporate this content. Given students' diverse experiences prior to matriculation into genetic counseling training programs, students' familiarity with these topics may vary. Following receipt of feedback from trainees at a large genetic counseling program regarding an existing course focused on molecular technologies, a three-part asynchronous module series was created as a prerequisite to this course as an opportunity to align knowledge. Designed to be completed by students on their own time and at their own pace, the modules allowed for additional instruction without increases in classroom time or credit hours. Content included a refresh on genetics concepts and an introduction to available genetics resources for developing a differential diagnosis as well as variant interpretation framework. Modules utilized a clinical scenario to anchor learning with interactive content, allowing students to progress at their own pace and explore content as they found necessary. Completion of this asynchronous module series was required by incoming first-year students prior to the start of the academic semester. Following completion, students were asked to provide feedback on the module series. Reviews were primarily positive with students indicating that while the content was not entirely new, they found the review valuable and would be likely to reference the modules later in their genetic counseling training. Areas identified for improvement included additional detail regarding genetic testing methods as well as adjusting the interactive content to ensure accessibility for all students and systems. Taken together, the development and implementation of this asynchronous series as an additional component to genetic counseling training was considered a success and this approach can be considered to address additional topics dependent on a programs' needs.


Subject(s)
Genetic Counseling , Molecular Diagnostic Techniques , Humans , Students , Genetic Testing , Educational Status
3.
Am J Med Genet A ; 185(9): 2766-2775, 2021 09.
Article in English | MEDLINE | ID: mdl-34160123

ABSTRACT

Retinoic acid exposures as well as defects in the retinoic acid-degrading enzyme CYP26B1 have teratogenic effects on both limb and craniofacial skeleton. An initial report of four individuals described a syndrome of fetal and infantile lethality with craniosynostosis and skeletal anomalies caused by homozygous pathogenic missense variants in CYP26B1. In contrast, a 22-year-old female was reported with a homozygous missense pathogenic variant in CYP26B1 with complex multisuture craniosynostosis and intellectual disability, suggesting that in some cases, biallelic pathogenic variants of CYP26B1 may be compatible with life. Here we describe four additional living individuals from two families with compound heterozygous pathogenic missense variants in CYP26B1. Structural assessment of these additional missense variants places them further from the catalytic site and supports a model consistent with milder nonlethal disease. In addition to previously reported findings of multisuture craniosynostosis, conductive hearing loss, joint contractures, long slender fingers, camptodactly, broad fingertips, and developmental delay/intellectual disability, skeletal imaging in our cases also revealed gracile long bones, gracile ribs, radioulnar synostosis, and carpal and/or tarsal fusions. These individuals broaden the phenotypic range of biallelic pathogenic variants in CYPB26B1 and most significantly clarify that mortality can range from perinatal lethality to survival into adulthood.


Subject(s)
Abnormalities, Multiple/pathology , Homozygote , Mutation, Missense , Radius/abnormalities , Retinoic Acid 4-Hydroxylase/genetics , Synostosis/pathology , Ulna/abnormalities , Abnormalities, Multiple/genetics , Child , Family , Female , Humans , Infant , Male , Phenotype , Radius/pathology , Synostosis/genetics , Ulna/pathology
4.
Int J Neonatal Screen ; 3(2)2017 Jun.
Article in English | MEDLINE | ID: mdl-28748224

ABSTRACT

An 18-month-old male was evaluated after presenting with disproportionately elevated liver transaminases in the setting of acute gastroenteritis. He had marked hepatomegaly on physical exam that was later confirmed with an abdominal ultrasound. Given this clinical picture, suspicion for a fatty acid oxidation disorder was raised. Further investigation revealed that his initial newborn screen was positive for carnitine palmitoyltransferase 1A (CPT1A) deficiency-a rare autosomal recessive disorder of long-chain fatty acid oxidation. Confirmatory biochemical testing in the newborn period showed carnitine levels to be unexpectedly low with a normal acylcarnitine profile. Thus, it was considered to be a false-positive newborn screen and metabolic follow-up was not recommended. Repeat biochemical testing during this hospitalization revealed a normal acylcarnitine profile. The only abnormalities noted were a low proportion of acylcarnitine species from plasma, an elevated free-to-total carnitine ratio, and mild hypoketotic medium chain dicarboxylic aciduria on urine organic acids. Gene sequencing of CPT1A revealed a novel homozygous splice site variant that confirmed his diagnosis. CPT1A deficiency has a population founder effect in the Inuit and other Arctic groups, but has not been previously reported in persons of Ashkenazi Jewish ancestry.

5.
J Med Genet ; 52(9): 627-35, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26185144

ABSTRACT

BACKGROUND: The identification of the molecular basis of mitochondrial disorders continues to be challenging and expensive. The increasing usage of next-generation sequencing is facilitating the discovery of the genetic aetiology of heterogeneous phenotypes associated with these conditions. Coenzyme Q(10) (CoQ(10)) is an essential cofactor for mitochondrial respiratory chain complexes and other biochemical pathways. Mutations in genes involved in CoQ(10) biosynthesis cause primary CoQ(10) deficiency syndromes that can be treated with oral supplementation of ubiquinone. METHODS: We used whole exome sequencing to evaluate six probands from four unrelated families with clinical findings suggestive of a mitochondrial disorder. Clinical data were obtained by chart review, parental interviews, direct patient assessment and biochemical and pathological evaluation. RESULTS: We identified five recessive missense mutations in COQ4 segregating with disease in all four families. One mutation was found in a homozygous state in two unrelated Ashkenazi Jewish probands. All patients were female, and presented on the first day of life, and died in the neonatal period or early infancy. Clinical findings included hypotonia (6/6), encephalopathy with EEG abnormalities (4/4), neonatal seizures (3/6), cerebellar atrophy (4/5), cardiomyopathy (5/6) and lactic acidosis (4/6). Autopsy findings in two patients revealed neuron loss and reactive astrocytosis or cerebellar and brainstem hypoplasia and microdysgenesis. CONCLUSIONS: Mutations in COQ4 cause an autosomal recessive lethal neonatal mitochondrial encephalomyopathy associated with a founder mutation in the Ashkenazi Jewish population. The early mortality in our cohort suggests that COQ4 is an essential component of the multisubunit complex required for CoQ(10) biosynthesis.


Subject(s)
Mitochondrial Encephalomyopathies/genetics , Mitochondrial Proteins/genetics , Mutation, Missense , Female , Humans , Infant, Newborn , Jews , Mitochondrial Encephalomyopathies/mortality , Mitochondrial Encephalomyopathies/physiopathology , Pregnancy , Sequence Analysis, DNA , Ubiquinone/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...