Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 23(4): 492-506, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-37796181

ABSTRACT

Metastatic disease remains the leading cause of death due to cancer, yet the mechanism(s) of metastasis and its timely detection remain to be elucidated. Neutrophil elastase (NE), a serine protease secreted by neutrophils, is a crucial mediator of chronic inflammation and tumor progression. In this study, we used the PyMT model (NE+/+ and NE-/-) of breast cancer to interrogate the tumor-intrinsic and -extrinsic mechanisms by which NE can promote metastasis. Our results showed that genetic ablation of NE significantly reduced lung metastasis and improved metastasis-free survival. RNA-sequencing analysis of primary tumors indicated differential regulation of tumor-intrinsic actin cytoskeleton signaling pathways by NE. These NE-regulated pathways are critical for cell-to-cell contact and motility and consistent with the delay in metastasis in NE-/- mice. To evaluate whether pharmacologic inhibition of NE inhibited pulmonary metastasis and phenotypically mimicked PyMT NE-/- mice, we utilized AZD9668, a clinically available and specific NE inhibitor. We found AZD9668 treated PyMT-NE+/+ mice showed significantly reduced lung metastases, improved recurrence-free, metastasis-free and overall survival, and their tumors showed similar molecular alterations as those observed in PyMT-NE-/- tumors. Finally, we identified a NE-specific signature that predicts recurrence and metastasis in patients with breast cancer. Collectively, our studies suggest that genetic ablation and pharmacologic inhibition of NE reduces metastasis and extends survival of mouse models of breast cancer, providing rationale to examine NE inhibitors as a treatment strategy for the clinical management of patients with metastatic breast cancer.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Pyridones , Sulfones , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Leukocyte Elastase/genetics , Lung Neoplasms/pathology
2.
Am J Cancer Res ; 12(1): 315-326, 2022.
Article in English | MEDLINE | ID: mdl-35141020

ABSTRACT

TRAIL-based therapies are of significant clinical interest because of its unique ability to induce apoptosis in cancer cells while sparing normal and untransformed cells. This selective antitumor potential of the TRAIL pathway has been harnessed by development of therapeutics including recombinant (rh)TRAIL and TRAIL-receptor agonist antibodies such as mapatumumab and lexatumumab. While these TRAIL-based therapies have proven successful in preclinical studies and safe in early phase clinical trials, the limited serum half-life has been a hurdle for further clinical development. Here we characterize miR-3132, a novel and first-in class TRAIL-inducing miRNA with potent anti-proliferative and pro-apoptotic effects in cancer cell lines. Initial mechanistic studies indicate that miR-3132 engages the interferon signaling pathway to induce TRAIL and subsequent TRAIL-dependent apoptosis in cancer cell lines. Our data further suggests that the binding of miR-3132 to toll-like receptors could be the upstream pathway for the interferon response. The current study the first report to demonstrate miR-3132's in vitro efficacy and preliminary mechanism of action in cancer cell lines.

4.
Oncogenesis ; 10(5): 40, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990543

ABSTRACT

Salivary gland cancers (SGCs) are rare yet aggressive malignancies with significant histological heterogeneity, which has made prediction of prognosis and development of targeted therapies challenging. In majority of patients, local recurrence and/or distant metastasis are common and systemic treatments have minimal impact on survival. Therefore, identification of novel targets for treatment that can also be used as predictors of recurrence for multiple histological subtypes of SGCs is an area of unmet need. In this study, we developed a novel transgenic mouse model of SGC, efficiently recapitulating the major histological subtype (adenocarcinomas of the parotid gland) of human SGC. CDK2 knock out (KO) mice crossed with MMTV-low molecular weight forms of cyclin E (LMW-E) mice generated the transgenic mouse models of SGC, which arise in the parotid region of the salivary gland, similar to the common site of origin seen in human SGCs. To identify the CDK2 independent catalytic partner(s) of LMW-E, we used LMW-E expressing cell lines in mass spectrometric analysis and subsequent biochemical validation in pull down assays. These studies revealed that in the absence of CDK2, LMW-E preferentially binds to CDK5. Molecular targeting of CDK5, using siRNA, resulted in inhibition of cell proliferation of human SGCs overexpressing LMW-E. We also provide clinical evidence of significant association of LMW-E/CDK5 co-expression and decreased recurrence free survival in human SGC. Immunohistochemical analysis of LMW-E and CDK5 in 424 patients representing each of the four major histological subtypes of human salivary cancers (Aci, AdCC, MEC, and SDC) revealed that LMW-E and CDK5 are concordantly (positive/positive or negative/negative) expressed in 70% of these patients. The co-expression of LMW-E/CDK5 (both positive) robustly predicts the likelihood of recurrence, regardless of the histological classification of these tumors. Collectively, our results suggest that CDK5 is a novel and targetable biomarker for the treatment of patients with SGC presenting with LMW-E overexpressing tumors.

5.
Neoplasia ; 23(3): 304-325, 2021 03.
Article in English | MEDLINE | ID: mdl-33582407

ABSTRACT

A long-term goal in the cancer-field has been to develop strategies for treating p53-mutated tumors. A novel small-molecule, PG3-Oc, restores p53 pathway-signaling in tumor cells with mutant-p53, independently of p53/p73. PG3-Oc partially upregulates the p53-transcriptome (13.7% of public p53 target-gene dataset; 15.2% of in-house dataset) and p53-proteome (18%, HT29; 16%, HCT116-p53-/-). Bioinformatic analysis indicates critical p53-effectors of growth-arrest (p21), apoptosis (PUMA, DR5, Noxa), autophagy (DRAM1), and metastasis-suppression (NDRG1) are induced by PG3-Oc. ERK1/2- and CDK9-kinases are required to upregulate ATF4 by PG3-Oc which restores p53 transcriptomic-targets in cells without functional-p53. PG3-Oc represses MYC (ATF4-independent), and upregulates PUMA (ATF4-dependent) in mediating cell death. With largely nonoverlapping transcriptomes, induced-ATF4 restores p53 transcriptomic targets in drug-treated cells including functionally important mediators such as PUMA and DR5. Our results demonstrate novel p53-independent drug-induced molecular reprogramming involving ERK1/2, CDK9, and ATF4 to restore upregulation of p53 effector genes required for cell death and tumor suppression.


Subject(s)
Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Cyclin-Dependent Kinase 9/metabolism , Mutation , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , CRISPR-Cas Systems , Cell Line, Tumor , Cell Survival/drug effects , Endoplasmic Reticulum Stress , Gene Editing , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Inhibitory Concentration 50 , MAP Kinase Signaling System , Models, Biological
7.
Mol Cancer Res ; 16(5): 754-766, 2018 05.
Article in English | MEDLINE | ID: mdl-29588330

ABSTRACT

Androgen receptor (AR) signaling plays a key role in prostate cancer progression, and androgen deprivation therapy (ADT) is a mainstay clinical treatment regimen for patients with advanced disease. Unfortunately, most prostate cancers eventually become androgen-independent and resistant to ADT with patients progressing to metastatic castration-resistant prostate cancer (mCRPC). Constitutively activated AR variants (AR-V) have emerged as mediators of resistance to AR-targeted therapy and the progression of mCRPC, and they represent an important therapeutic target. Out of at least 15 AR-Vs described thus far, AR-V7 is the most abundant, and its expression correlates with ADT resistance. ONC201/TIC10 is the founding member of the imipridone class of small molecules and has shown anticancer activity in a broad range of tumor types. ONC201 is currently being tested in phase I/II clinical trials for advanced solid tumors, including mCRPC, and hematologic malignancies. There has been promising activity observed in patients in early clinical testing. This study demonstrates preclinical single-agent efficacy of ONC201 using in vitro and in vivo models of prostate cancer. ONC201 has potent antiproliferative and proapoptotic effects in both castration-resistant and -sensitive prostate cancer cells. Furthermore, the data demonstrate that ONC201 downregulates the expression of key drivers of prostate cancer such as AR-V7 and downstream target genes including the clinically used biomarker PSA (KLK3). Finally, the data also provide a preclinical rationale for combination of ONC201 with approved therapeutics for prostate cancer such as enzalutamide, everolimus (mTOR inhibitor), or docetaxel.Implications: The preclinical efficacy of ONC201 as a single agent or in combination, in hormone-sensitive or castration-resistant prostate cancer, suggests the potential for immediate clinical translation. Mol Cancer Res; 16(5); 754-66. ©2018 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Everolimus/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/drug therapy , Receptors, Androgen/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Everolimus/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Imidazoles , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Pyridines , Pyrimidines , Signal Transduction , Transfection
8.
Neoplasia ; 20(1): 80-91, 2018 01.
Article in English | MEDLINE | ID: mdl-29216597

ABSTRACT

ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Neoplasms/metabolism , Receptors, Dopamine/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Gene Expression , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , Humans , Imidazoles , Neoplasms/genetics , Pyridines , Pyrimidines , RNA, Small Interfering/genetics , Receptors, Dopamine/genetics , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism , Receptors, Dopamine D5/genetics , Receptors, Dopamine D5/metabolism
9.
Cell Cycle ; 17(4): 468-478, 2018.
Article in English | MEDLINE | ID: mdl-29157092

ABSTRACT

ONC201, founding member of the imipridone class of small molecules, is currently being evaluated in advancer cancer clinical trials. We explored single agent and combinatorial efficacy of ONC201 in preclinical models of hematological malignancies. ONC201 demonstrated (GI50 1-8 µM) dose- and time-dependent efficacy in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt's lymphoma, anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), Hodgkin's lymphoma (nodular sclerosis) and multiple myeloma (MM) cell lines including cells resistant to standard of care (dexamethasone in MM) and primary samples. ONC201 induced caspase-dependent apoptosis that involved activation of the integrated stress response (ATF4/CHOP) pathway, inhibition of Akt phosphorylation, Foxo3a activation, downregulation of cyclin D1, IAP and Bcl-2 family members. ONC201 synergistically reduced cell viability in combination with cytarabine and 5-azacytidine in AML cells. ONC201 combined with cytarabine in a Burkitt's lymphoma xenograft model induced tumor growth inhibition that was superior to either agent alone. ONC201 synergistically combined with bortezomib in MM, MCL and ALCL cells and with ixazomib or dexamethasone in MM cells. ONC201 combined with bortezomib in a Burkitt's lymphoma xenograft model reduced tumor cell density and improved CHOP induction compared to either agent alone. These results serve as a rationale for ONC201 single-agent trials in relapsed/refractory acute leukemia, non-Hodgkin's lymphoma, MM and combination trial with dexamethasone in MM, provide pharmacodynamic biomarkers and identify further synergistic combinatorial regimens that can be explored in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Activating Transcription Factor 4/metabolism , Animals , Antineoplastic Agents/therapeutic use , Azacitidine/pharmacology , Boron Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , G1 Phase Cell Cycle Checkpoints/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Imidazoles , Mice , Mice, SCID , Pyridines , Pyrimidines , Transcription Factor CHOP/metabolism , Transplantation, Heterologous
10.
Cell Cycle ; 17(5): 557-567, 2018.
Article in English | MEDLINE | ID: mdl-28749203

ABSTRACT

P53 tumor suppressor gene mutations occur in the majority of human cancers and contribute to tumor development, progression and therapy resistance. Direct functional restoration of p53 as a transcription factor has been difficult to achieve in the clinic. We performed a functional screen using a bioluminescence-based transcriptional read-out to identify small molecules that restore the p53 pathway in mutant p53-bearing cancer cells. We identified CB002, as a candidate that restores p53 function in mutant p53-expressing colorectal cancer cells and without toxicity to normal human fibroblasts. Cells exposed to CB002 show increased expression of endogenous p53 target genes NOXA, DR5, and p21 and cell death which occurs by 16 hours, as measured by cleaved caspases or PARP. Stable knockdown of NOXA completely abrogates PARP cleavage and reduces sub-G1 content, implicating NOXA as the key mediator of cell death induction by CB002. Moreover, CB002 decreases the stability of mutant p53 in RXF393 cancer cells and an exogenously expressed R175H p53 mutant in HCT116 p53-null cells. R175H p53 expression was rescued by addition of proteasome inhibitor MG132 to CB002, suggesting a role for ubiquitin-mediated degradation of the mutant protein. In summary, CB002, a p53 pathway-restoring compound that targets mutant p53 for degradation and induces tumor cell death through NOXA, may be further developed as a cancer therapeutic.


Subject(s)
Aniline Compounds/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Purines/pharmacology , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Leupeptins/pharmacology , Mutagenesis, Site-Directed , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Interference , RNA, Small Interfering/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
11.
Oncotarget ; 8(47): 81776-81793, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137221

ABSTRACT

Pancreatic cancer is chemo-resistant and metastasizes early with an overall five-year survival of ∼8.2%. First-in-class imipridone ONC201 is a small molecule in clinical trials with anti-cancer activity. ONC212, a fluorinated-ONC201 analogue, shows preclinical efficacy in melanoma and hepatocellular-cancer models. We investigated efficacy of ONC201 and ONC212 against pancreatic cancer cell lines (N=16 including 9 PDX-cell lines). We demonstrate ONC212 efficacy in 4 in-vivo models including ONC201-resistant tumors. ONC212 is active in pancreatic cancer as single agent or in combination with 5-fluorouracil, irinotecan, oxaliplatin or RTK inhibitor crizotinib. Based on upregulation of pro-survival IGF1-R in some tumors, we found an active combination of ONC212 with inhibitor AG1024, including in vivo. We show a rationale for targeting pancreatic cancer using ONC212 combined with targeting the unfolded-protein response and ER chaperones such as GRP78/BIP. Our results lay the foundation to test imipridones, anti-cancer agents, in pancreatic cancer, that is refractory to most drugs.

12.
Cancer Res ; 77(24): 6902-6913, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29061672

ABSTRACT

CDK4/6 targeting is a promising therapeutic strategy under development for various tumor types. In this study, we used computational methods and The Cancer Genome Atlas dataset analysis to identify novel miRNAs that target CDK4/6 and exhibit potential for therapeutic development in colorectal cancer. The 3'UTR of CDK4/6 mRNAs are targeted by a family of miRNAs, which includes miR-6883-5p, miR-149*, miR-6785-5p, and miR-4728-5p. Ectopic expression of miR-6883-5p or miR-149* downregulated CDK4 and CDK6 levels in human colorectal cancer cells. RNA-seq analysis revealed an inverse relationship between the expression of CDK4/6 and miR-149* and intronic miRNA-6883-5p encoding the clock gene PER1 in colorectal cancer patient samples. Restoring expression of miR-6883-5p and miR-149* blocked cell growth leading to G0-G1 phase cell-cycle arrest and apoptosis in colorectal cancer cells. CDK4/6 targeting by miR-6883-5p and miR-149* could only partially explain the observed antiproliferative effects. Notably, both miRNAs synergized with the frontline colorectal cancer chemotherapy drug irinotecan. Further, they resensitized mutant p53-expressing cell lines resistant to 5-fluorouracil. Taken together, our results established the foundations of a candidate miRNA-based theranostic strategy to improve colorectal cancer management. Cancer Res; 77(24); 6902-13. ©2017 AACR.


Subject(s)
Colonic Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , G1 Phase Cell Cycle Checkpoints/genetics , MicroRNAs/physiology , Cell Line, Tumor , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Multigene Family/physiology
13.
Cancer Biol Ther ; 18(9): 694-704, 2017 Sep 02.
Article in English | MEDLINE | ID: mdl-28886275

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States. We analyzed 26 MSI-High and 558 non-MSI-High CRC tumors. BRCA2 mutations were highly enriched (50%) in MSI-High CRC. Immunohistochemistry showed that BRCA2-mutated MSI-High CRC had high c-MET (64%) expression compared with BRCA-WT (17%). We hypothesized a mechanistic link between BRCA2-deficiency and c-MET overexpression and synergistic interaction between drugs that treat BRCA-deficient tumors (mitomycin C (MMC) or PARP inhibitors) and c-MET inhibitors (crizotinib). We tested CRC cell lines for sensitivity to MMC plus crizotinib or other drug combinations including PARP-inhibitors. Combined treatment of tumor cells with crizotinib and MMC led to increased apoptosis as compared with each drug alone. Additionally, combination treatment with increasing concentrations of both drugs demonstrated a synergistic anti-cancer effect (CI = 0.006-0.74). However, we found no evidence for c-MET upregulation upon effective BRCA2 knockdown in tumor cells -/+DNA damage. Although we found no mechanistic link between BRCA2 deficiency and c-MET overexpression, c-MET is frequently overexpressed in CRC and BRCA2 is mutated especially in MSI-H CRC. The combination of crizotinib with MMC appeared synergistic regardless of MSI or BRCA2 status. Using an in-vivo CRC xenograft model we found reduced tumor growth with combined crizotinib and MMC therapy (p = 0.0088). Our preclinical results support clinical testing of the combination of MMC and crizotinib in advanced CRC. Targeting cell survival mediated by c-MET in combination with targeting DNA repair may be a reasonable strategy for therapy development in CRC or other cancers.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Mitomycin/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Alleles , Animals , Cell Line, Tumor , Cell Survival/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Crizotinib , Disease Models, Animal , Drug Synergism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Silencing , Genes, BRCA2 , Humans , Immunohistochemistry , Mice , Mutation , Proto-Oncogene Proteins c-met , Xenograft Model Antitumor Assays
15.
PLoS One ; 12(8): e0180541, 2017.
Article in English | MEDLINE | ID: mdl-28767654

ABSTRACT

Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.


Subject(s)
Biomarkers, Tumor/genetics , Central Nervous System Neoplasms/physiopathology , Colorectal Neoplasms/physiopathology , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/physiopathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Central Nervous System Neoplasms/genetics , Colorectal Neoplasms/genetics , Glioblastoma/genetics , HCT116 Cells , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Imidazoles , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Neoplastic Stem Cells/metabolism , Pyridines , Pyrimidines , Transcriptome , Wnt Signaling Pathway/drug effects
16.
Cell Cycle ; 16(19): 1790-1799, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28489985

ABSTRACT

Anti-cancer small molecule ONC201 upregulates the integrated stress response (ISR) and acts as a dual inactivator of Akt/ERK, leading to TRAIL gene activation. ONC201 is under investigation in multiple clinical trials to treat patients with cancer. Given the unique imipridone core chemical structure of ONC201, we synthesized a series of analogs to identify additional compounds with distinct therapeutic properties. Several imipridones with a broad range of in vitro potencies were identified in an exploration of chemical derivatives. Based on in vitro potency in human cancer cell lines and lack of toxicity to normal human fibroblasts, imipridones ONC206 and ONC212 were prioritized for further study. Both analogs inhibited colony formation, and induced apoptosis and downstream signaling that involves the integrated stress response and Akt/ERK, similar to ONC201. Compared to ONC201, ONC206 demonstrated improved inhibition of cell migration while ONC212 exhibited rapid kinetics of activity. ONC212 was further tested in >1000 human cancer cell lines in vitro and evaluated for safety and anti-tumor efficacy in vivo. ONC212 exhibited broad-spectrum efficacy at nanomolar concentrations across solid tumors and hematological malignancies. Skin cancer emerged as a tumor type with improved efficacy relative to ONC201. Orally administered ONC212 displayed potent anti-tumor effects in vivo, a broad therapeutic window and a favorable PK profile. ONC212 was efficacious in vivo in BRAF V600E melanoma models that are less sensitive to ONC201. Based on these findings, ONC212 warrants further development as a drug candidate. It is clear that therapeutic utility extends beyond ONC201 to include additional imipridones.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds, 4 or More Rings/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Imidazoles , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Organ Specificity , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyridines , Pyrimidines , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
17.
Transl Cancer Res ; 6(Suppl 7): S1239-S1243, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30175049

ABSTRACT

Glioblastoma is an aggressive central nervous system tumor with a 5-year-survival rate of less than 10%. Patients diagnosed with the disease are treated with surgery, radiation and temozolomide chemotherapy. Despite survival benefits, patients eventually relapse. There is a need for new treatments with improved efficacy. Imipridone ONC201 is a small molecule originally identified as a TNF-related apoptosis inducing ligand (TRAIL)-inducing compound. ONC201 has the unique ability to induce expression of both pro-death ligand TRAIL and its receptor DR5 through engagement of the cellular integrated stress response (ISR) pathway. Arrillaga-Romany et al. report early results from futility analysis of a phase II clinical trial of ONC201 in 17 patients with recurrent or refractory glioblastoma conducted at the Massachusetts General Hospital Cancer Center. The results are promising, as ONC201 shows preliminary signs of efficacy. Further testing of ONC201 in an expansion cohort of patients with glioblastoma is ongoing.

18.
Oncotarget ; 7(45): 74380-74392, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27602582

ABSTRACT

ONC201 is the founding member of a novel class of anti-cancer compounds called imipridones that is currently in Phase II clinical trials in multiple advanced cancers. Since the discovery of ONC201 as a p53-independent inducer of TRAIL gene transcription, preclinical studies have determined that ONC201 has anti-proliferative and pro-apoptotic effects against a broad range of tumor cells but not normal cells. The mechanism of action of ONC201 involves engagement of PERK-independent activation of the integrated stress response, leading to tumor upregulation of DR5 and dual Akt/ERK inactivation, and consequent Foxo3a activation leading to upregulation of the death ligand TRAIL. ONC201 is orally active with infrequent dosing in animals models, causes sustained pharmacodynamic effects, and is not genotoxic. The first-in-human clinical trial of ONC201 in advanced aggressive refractory solid tumors confirmed that ONC201 is exceptionally well-tolerated and established the recommended phase II dose of 625 mg administered orally every three weeks defined by drug exposure comparable to efficacious levels in preclinical models. Clinical trials are evaluating the single agent efficacy of ONC201 in multiple solid tumors and hematological malignancies and exploring alternative dosing regimens. In addition, chemical analogs that have shown promise in other oncology indications are in pre-clinical development. In summary, the imipridone family that comprises ONC201 and its chemical analogs represent a new class of anti-cancer therapy with a unique mechanism of action being translated in ongoing clinical trials.


Subject(s)
Antineoplastic Agents/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Imidazoles , Pyridines , Pyrimidines
19.
Cancer Res ; 76(7): 1989-99, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26759239

ABSTRACT

Tumor suppressor p53 is frequently mutated or inactivated in colorectal cancer. In contrast, p53 family member p73 is rarely mutated in colorectal cancer and p73 activation elicits p53-like tumor suppression. Colorectal cancer stem cells (CRCSC) comprise a rare self-renewing subpopulation that contributes to tumor maintenance and chemoresistance. p53 restoration is known to target CRCSCs, but p73 restoration in CRCSCs has not been examined. In this study, we investigated the effects of the small-molecule prodigiosin, which restores the p53 pathway in tumor cells via p73 activation, on CRCSCs in vitro and in vivo Prodigiosin prevented colonosphere formation independent of p53 status and reduced the viability of self-renewing, 5-fluorouracil-resistant Aldefluor positive [Aldefluor(+)] CRCSCs in vitro Furthermore, prodigiosin inhibited the growth of xenograft tumors initiated with Aldefluor+ cells without toxic effects and limited the tumorigenic potential of these cells. Consistently, prodigiosin induced activation of a p53-responsive luciferase reporter in colonospheres, Aldefluor(+) cells, and tumor xenografts. Mechanistic studies revealed that prodigiosin increased the levels of p73 and reduced levels of the oncogenic N-terminally truncated isoform ΔNp73 in Aldefluor(+) cells. Accordingly, p73 knockdown or ΔNp73 overexpression suppressed prodigiosin-mediated inhibition of colonosphere formation. Moreover, prodigiosin increased levels of the transcription factor c-Jun, a regulator of p73 and ΔNp73, in both the cytoplasm and nucleus. c-Jun knockdown attenuated prodigiosin-mediated p53-reporter activation, ΔNp73 downregulation, p73 activation, and cell death. Collectively, our findings highlight the previously uncharacterized use of p73-activating therapeutics to target CRCSCs. Cancer Res; 76(7); 1989-99. ©2016 AACR.


Subject(s)
Anti-Bacterial Agents/metabolism , Neoplastic Stem Cells/metabolism , Nuclear Proteins/genetics , Prodigiosin/metabolism , Animals , Colorectal Neoplasms , Humans , Mice , Signal Transduction , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
20.
F1000Res ; 3: 198, 2014.
Article in English | MEDLINE | ID: mdl-25400908

ABSTRACT

Breast cancer is the most commonly diagnosed cancer in women. The latest world cancer statistics calculated by the International Agency for Research on Cancer (IARC) revealed that 1,677,000 women were diagnosed with breast cancer in 2012 and 577,000 died. The TNM classification of malignant tumor (TNM) is the most commonly used staging system for breast cancer. Breast cancer is a group of very heterogeneous diseases. The molecular subtype of breast cancer carries important predictive and prognostic values, and thus has been incorporated in the basic initial process of breast cancer assessment/diagnosis. Molecular subtypes of breast cancers are divided into human epidermal growth factor receptor 2 positive (HER2 +), hormone receptor positive (estrogen or progesterone +), both positive, and triple negative breast cancer. By virtue of early detection via mammogram, the majority of breast cancers in developed parts of world are diagnosed in the early stage of the disease. Early stage breast cancers can be completely resected by surgery. Over time however, the disease may come back even after complete resection, which has prompted the development of an adjuvant therapy. Surgery followed by adjuvant treatment has been the gold standard for breast cancer treatment for a long time. More recently, neoadjuvant treatment has been recognized as an important strategy in biomarker and target evaluation. It is clinically indicated for patients with large tumor size, high nodal involvement, an inflammatory component, or for those wish to preserve remnant breast tissue. Here we review the most up to date conventional and developing treatments for different subtypes of early stage breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...