Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 166(12): 1314-1328, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19324457

ABSTRACT

To induce androgenesis in field pea, grass pea and the model legume species Medicago truncatula, isolated microspores of various genotypes of these three species were submitted to a range of abiotic stresses prior to and during their initial culture, in order to stimulate them to divide and form embryos. Some stress agents had a positive effect on androgenesis from the treated microspores. Submission of flower buds to a cold period prior to anther excision or microspore isolation, modifying the osmotic pressure of the medium during initial culture and electroporation of isolated microspores were the three major individual stress agents to have an impact on the efficiency of androgenetic proliferation and subsequent differentiation from the microspores of pea, grass pea and M. truncatula genotypes. A combination of osmotic and electric shocks significantly improved responses from isolated microspores and yielded microcalluses and then calluses, but only few underwent morphogenesis. Further work is under way to improve responses and extend them to other genotypes. The results reported here are, to the best of our knowledge, the first successful results from isolated microspores of these species.


Subject(s)
Fabaceae/embryology , Gametogenesis , Pollen/embryology , Stress, Physiological , Buffers , Cell Division , Cell Proliferation , Cell Survival , Culture Media , Electric Stimulation , Electroporation , Fabaceae/cytology , Genotype , Osmolar Concentration , Osmotic Pressure , Pollen/cytology , Seeds/cytology , Temperature
2.
Plant Cell Rep ; 12(7-8): 385-9, 1993 May.
Article in English | MEDLINE | ID: mdl-24197337

ABSTRACT

Interior spruce (Picea glauca engelmannii complex) and black spruce (Picea mariana Mill.) cotyledonary somatic embryos were encapsulated in sodium alginate. Somatic embryo viability was retained, but germination occurred at a reduced frequency compared with the equivalent zygotic embryos. The addition of 0.5% (w/v) activated charcoal to the alginate capsule significantly enhanced root development and germination for somatic embryos but not for zygotic embryos. The possibility of developing an artiflcal endosperm was also investigated, by addition of Litvay (Litvay et al. 1981) nutrients with or without 90 mM sucrose to the alginate-charcoal capsule. This treatment significantly enhanced root development for all embryo categories with the exception of black spruce somatic embryos. Encapsulated and non-encapsulated somatic embryos survived one month cold storage at 4 °C without reduction in germination frequency.

3.
Plant Cell Rep ; 9(9): 479-83, 1991 Jan.
Article in English | MEDLINE | ID: mdl-24213784

ABSTRACT

For optimization of the transformation procedure with Pisum sativum L. stern explant callus was used to test the effect of disarmed Agrobacterium tumefaciens strains, cocultivation procedures (preconditioning of explants; use of Nicotiana tabacum L. nurse cultures), duration of cocultivation (2, 3 or 4 days), and agents for selection (kanamycin or hygromycin). The succinamopine strain EHA101(pBI1042) produced the highest percentage of transformed calli (77%) when used in conjunction with tobacco nurse culture during four days of cocultivation. Using this strain, kanamycin (76%) and hygromycin (77%) were equally effective selective agents, but for strain LBA4404(pBI1042) percentage of transformed calli was higher for hygromycin (63%) than for kanamycin (17%). The procedures and strains shown to be optimal for transformation of pea callus will now be complemented by a pea regeneration system.

SELECTION OF CITATIONS
SEARCH DETAIL
...