Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1336566, 2024.
Article in English | MEDLINE | ID: mdl-38510242

ABSTRACT

Introduction: About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results: By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion: Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Mice , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors , Antibody-Dependent Cell Cytotoxicity
2.
Nat Rev Cancer ; 23(7): 450-473, 2023 07.
Article in English | MEDLINE | ID: mdl-37217781

ABSTRACT

Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.


Subject(s)
Endocytosis , Neoplasms , Humans , Endocytosis/physiology , Neoplasms/drug therapy , Receptor Protein-Tyrosine Kinases/metabolism , Membrane Proteins , Signal Transduction
3.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188523, 2021 04.
Article in English | MEDLINE | ID: mdl-33600823

ABSTRACT

The natural history of adenoid cystic carcinoma (ACC) is relentless, defined by treatment failure heralded by locoregional recurrence and distant metastatic disease. In this review, we present an update of clinical features, molecular classification, current targeted therapies, immune landscapes and novel treatment targets with their respective clinical trials. The presented results are defined by a lack of overall response rate and limited progression free survival, with restriction to stable disease. In addition, ACC is resistant to immune checkpoint inhibition due to low tumour immunogenicity and lack of PD-L1 expression. Here we present a new prospective research paradigm for ACC, including the potential to target prostate specific membrane antigen (PSMA) and the potential for manipulation of target receptors in the clinic. The presentation of this review aims to promote future research to improve response rates and outcomes for therapeutics undergoing clinical trial in ACC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Carcinoma, Adenoid Cystic/drug therapy , Antibodies, Monoclonal/pharmacology , Carcinoma, Adenoid Cystic/metabolism , Clinical Trials as Topic , Disease Progression , Humans , Immunotherapy , Prospective Studies , Signal Transduction/drug effects , Survival Analysis
4.
STAR Protoc ; 1(2): 100087, 2020 09 18.
Article in English | MEDLINE | ID: mdl-33111120

ABSTRACT

We describe an ex vivo EGF ligand internalization assay using fresh patient tumor biopsies to determine how antigen targets will be trafficked before patients receive mAb treatment. This protocol facilitates a sensitive and reproducible indication as to mAbs surface retention times during treatment. EGF uptake protocols can also be used to analyze EGFR heterogeneity and localization of EGFR in both tumor and xenograft tissue. The technology can be adapted to analyze other receptors such as PD-L1 for which methods are provided. For complete details on the use and execution of this protocol, please refer to Joseph et al. (2019) and Chew et al. (2020).


Subject(s)
EGF Family of Proteins/pharmacology , ErbB Receptors/immunology , Immunohistochemistry/methods , Animals , Antibodies, Monoclonal , B7-H1 Antigen , Biomarkers, Pharmacological , Cell Line, Tumor , Humans , Ligands , Mice , Neoplasms/metabolism , Xenograft Model Antitumor Assays
5.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142680

ABSTRACT

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Drug Resistance, Neoplasm/immunology , Neoplasms/drug therapy , Prochlorperazine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen Presentation/drug effects , Biopsy , Cetuximab/pharmacology , Drug Delivery Systems/methods , Drug Resistance, Neoplasm/genetics , Endocytosis/drug effects , Endocytosis/immunology , Heterografts , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Trastuzumab/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...