Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098070

ABSTRACT

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Subject(s)
Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Ligands , CD8-Positive T-Lymphocytes , Protein Binding
2.
Adv Protein Chem Struct Biol ; 121: 253-303, 2020.
Article in English | MEDLINE | ID: mdl-32312425

ABSTRACT

Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.


Subject(s)
Arthritis/drug therapy , Autoimmune Diseases/drug therapy , Immunologic Factors/therapeutic use , Interleukin-17/antagonists & inhibitors , Interleukin-23/antagonists & inhibitors , Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use , Arthritis/genetics , Arthritis/immunology , Arthritis/pathology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Binding Sites/drug effects , Gene Expression Regulation , Humans , Immunologic Factors/chemistry , Interleukin-17/chemistry , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-23/chemistry , Interleukin-23/genetics , Interleukin-23/immunology , Models, Molecular , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Signal Transduction , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/therapeutic use , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
3.
Curr Protoc Chem Biol ; 12(1): e78, 2020 03.
Article in English | MEDLINE | ID: mdl-32150343

ABSTRACT

Small-molecule drug discovery can be hindered by the formation of aggregates that act as non-selective inhibitors of drug targets. Such aggregates appear as false positives in high-throughput screening campaigns and can bedevil structure-activity relationships during compound optimization. Protocols are described for resonant waveguide grating (RWG) and dynamic light scattering (DLS) as microplate-based high-throughput approaches to identify compound aggregation. Resonant waveguide grating and dynamic light scattering give equivalent results for the compound test set, as assessed with Bland-Altman analysis. © 2019 The Authors. Basic Protocol 1: Resonant waveguide grating (RWG) in 384-well or 1536-well plate format to detect compound aggregation Basic Protocol 2: Dynamic light scattering (DLS) in 384-well plate format to detect compound aggregation.


Subject(s)
Artifacts , High-Throughput Screening Assays/methods , Pharmaceutical Preparations/chemistry , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Drug Discovery/methods , Dynamic Light Scattering
4.
Nat Struct Mol Biol ; 24(7): 570-577, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28581512

ABSTRACT

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Protein Conformation
5.
Nat Chem Biol ; 13(6): 613-615, 2017 06.
Article in English | MEDLINE | ID: mdl-28346407

ABSTRACT

O-GlcNAc hydrolase (OGA) catalyzes removal of ßα-linked N-acetyl-D-glucosamine from serine and threonine residues. We report crystal structures of Homo sapiens OGA catalytic domain in apo and inhibited states, revealing a flexible dimer that displays three unique conformations and is characterized by subdomain α-helix swapping. These results identify new structural features of the substrate-binding groove adjacent to the catalytic site and open new opportunities for structural, mechanistic and drug discovery activities.


Subject(s)
Models, Biological , beta-N-Acetylhexosaminidases/chemistry , beta-N-Acetylhexosaminidases/metabolism , Acetylglucosamine/metabolism , Binding Sites , Calorimetry , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Protein Structure, Tertiary , Substrate Specificity
6.
J Med Chem ; 60(8): 3511-3517, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28300404

ABSTRACT

A prevalent observation in high-throughput screening and drug discovery programs is the inhibition of protein function by small-molecule compound aggregation. Here, we present the X-ray structural description of aggregation-based inhibition of a protein-protein interaction involving tumor necrosis factor α (TNFα). An ordered conglomerate of an aggregating small-molecule inhibitor (JNJ525) induces a quaternary structure switch of TNFα that inhibits the protein-protein interaction between TNFα and TNFα receptors. SPD-304 may employ a similar mechanism of inhibition.


Subject(s)
Tumor Necrosis Factor-alpha/antagonists & inhibitors , Carbon-13 Magnetic Resonance Spectroscopy , Crystallography, X-Ray , Humans , Molecular Structure , Protein Binding , Proton Magnetic Resonance Spectroscopy , Tumor Necrosis Factor-alpha/chemistry
7.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28039433

ABSTRACT

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Kinetics , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Receptor, trkA/genetics , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/chemistry , Receptor, trkB/genetics , Receptor, trkC/antagonists & inhibitors , Receptor, trkC/chemistry , Receptor, trkC/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Structure-Activity Relationship , Surface Plasmon Resonance
8.
J Biomol Screen ; 21(6): 608-19, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26969322

ABSTRACT

The primary objective of early drug discovery is to associate druggable target space with a desired phenotype. The inability to efficiently associate these often leads to failure early in the drug discovery process. In this proof-of-concept study, the most tractable starting points for drug discovery within the NF-κB pathway model system were identified by integrating affinity selection-mass spectrometry (AS-MS) with functional cellular assays. The AS-MS platform Automated Ligand Identification System (ALIS) was used to rapidly screen 15 NF-κB proteins in parallel against large-compound libraries. ALIS identified 382 target-selective compounds binding to 14 of the 15 proteins. Without any chemical optimization, 22 of the 382 target-selective compounds exhibited a cellular phenotype consistent with the respective target associated in ALIS. Further studies on structurally related compounds distinguished two chemical series that exhibited a preliminary structure-activity relationship and confirmed target-driven cellular activity to NF-κB1/p105 and TRAF5, respectively. These two series represent new drug discovery opportunities for chemical optimization. The results described herein demonstrate the power of combining ALIS with cell functional assays in a high-throughput, target-based approach to determine the most tractable drug discovery opportunities within a pathway.


Subject(s)
Drug Discovery , High-Throughput Screening Assays/methods , NF-kappa B/antagonists & inhibitors , Structure-Activity Relationship , Ligands , Mass Spectrometry/methods , NF-kappa B/chemistry , Protein Binding , Signal Transduction/drug effects , TNF Receptor-Associated Factor 5/antagonists & inhibitors , TNF Receptor-Associated Factor 5/chemistry , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/chemistry
9.
J Biol Chem ; 290(33): 20360-73, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26134571

ABSTRACT

G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl ß,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.


Subject(s)
G-Protein-Coupled Receptor Kinase 4/chemistry , G-Protein-Coupled Receptor Kinase 4/metabolism , Hypertension/genetics , Amino Acid Sequence , Crystallography, X-Ray , G-Protein-Coupled Receptor Kinase 4/genetics , Humans , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Conformation , Sequence Homology, Amino Acid , Substrate Specificity
10.
ACS Chem Biol ; 9(9): 2023-31, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-24992706

ABSTRACT

Bacterial resistance to antibiotics continues to pose serious challenges as the discovery rate for new antibiotics fades. Kibdelomycin is one of the rare, novel, natural product antibiotics discovered recently that inhibits the bacterial DNA synthesis enzymes gyrase and topoisomerase IV. It is a broad-spectrum, Gram-positive antibiotic without cross-resistance to known gyrase inhibitors, including clinically effective quinolones. To understand its mechanism of action, binding mode, and lack of cross-resistance, we have co-crystallized kibdelomycin and novobiocin with the N-terminal domains of Staphylococcus aureus gyrase B (24 kDa) and topo IV (ParE, 24 and 43 kDa). Kibdelomycin shows a unique "dual-arm", U-shaped binding mode in both crystal structures. The pyrrolamide moiety in the lower part of kibdelomycin penetrates deeply into the ATP-binding site pocket, whereas the isopropyl-tetramic acid and sugar moiety of the upper part thoroughly engage in polar interactions with a surface patch of the protein. The isoproramic acid (1,3-dioxopyrrolidine) and a tetrahydropyran acetate group (Sugar A) make polar contact with a surface area consisting of helix α4 and the flexible loop connecting helices α3 and α4. The two arms are connected together by a rigid decalin linker that makes van del Waals contacts with the protein backbone. This "dual-arm", U-shaped, multicontact binding mode of kibdelomycin is unique and distinctively different from binding modes of other known gyrase inhibitors (e.g., coumarins and quinolones), which explains its lack of cross-resistance and low frequency of resistance. The crystal structures reported in this paper should enable design and discovery of analogues with better properties and antibacterial spectrum.


Subject(s)
Aminoglycosides/chemistry , DNA Gyrase/chemistry , DNA Topoisomerase IV/chemistry , Naphthalenes/chemistry , Novobiocin/chemistry , Staphylococcus aureus/chemistry , Aminoglycosides/metabolism , Binding Sites , Crystallography, X-Ray , DNA Gyrase/metabolism , DNA Topoisomerase IV/metabolism , Models, Molecular , Molecular Structure , Naphthalenes/metabolism , Novobiocin/metabolism , Protein Conformation , Protein Multimerization , Pyrroles/chemistry , Pyrroles/metabolism , Pyrrolidinones/chemistry , Pyrrolidinones/metabolism , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/metabolism , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/metabolism
11.
J Biol Chem ; 288(47): 34073-34080, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24108127

ABSTRACT

The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.


Subject(s)
Amidohydrolases/chemistry , Escherichia coli/enzymology , Myristic Acids/chemistry , Protons , Uridine Diphosphate N-Acetylglucosamine/analogs & derivatives , Amidohydrolases/metabolism , Crystallography, X-Ray , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/chemistry , Myristic Acids/metabolism , Protein Structure, Tertiary , Uridine Diphosphate N-Acetylglucosamine/chemistry , Uridine Diphosphate N-Acetylglucosamine/metabolism
12.
J Am Chem Soc ; 134(30): 12342-5, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22793495

ABSTRACT

The cooperative assembly of FtsZ, the prokaryotic homologue of tubulin, plays an essential role in cell division. FtsZ is a potential drug target, as illustrated by the small-molecule cell-cycle inhibitor and antibacterial agent PC190723 that targets FtsZ. We demonstrate that PC190723 negatively modulates Staphylococcus aureus FtsZ polymerization cooperativity as reflected in polymerization at lower concentrations without a defined critical concentration. The crystal structure of the S. aureus FtsZ-PC190723 complex shows a domain movement that would stabilize the FtsZ protofilament over the monomeric state, with the conformational change mediated from the GTP-binding site to the C-terminal domain via helix 7. Together, the results reveal the molecular mechanism of FtsZ modulation by PC190723 and a conformational switch to the high-affinity state that enables polymer assembly.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Protein Conformation/drug effects , Pyridines/pharmacology , Staphylococcus aureus/drug effects , Thiazoles/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Humans , Molecular Docking Simulation , Protein Structure, Tertiary/drug effects , Staphylococcal Infections/drug therapy , Staphylococcus aureus/chemistry , Staphylococcus aureus/metabolism
13.
Sci Transl Med ; 4(126): 126ra35, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22440737

ABSTRACT

Despite the need for new antibiotics to treat drug-resistant bacteria, current clinical combinations are largely restricted to ß-lactam antibiotics paired with ß-lactamase inhibitors. We have adapted a Staphylococcus aureus antisense knockdown strategy to genetically identify the cell division Z ring components-FtsA, FtsZ, and FtsW-as ß-lactam susceptibility determinants of methicillin-resistant S. aureus (MRSA). We demonstrate that the FtsZ-specific inhibitor PC190723 acts synergistically with ß-lactam antibiotics in vitro and in vivo and that this combination is efficacious in a murine model of MRSA infection. Fluorescence microscopy localization studies reveal that synergy between these agents is likely to be elicited by the concomitant delocalization of their cognate drug targets (FtsZ and PBP2) in MRSA treated with PC190723. A 2.0 Å crystal structure of S. aureus FtsZ in complex with PC190723 identifies the compound binding site, which corresponds to the predominant location of mutations conferring resistance to PC190723 (PC190723(R)). Although structural studies suggested that these drug resistance mutations may be difficult to combat through chemical modification of PC190723, combining PC190723 with the ß-lactam antibiotic imipenem markedly reduced the spontaneous frequency of PC190723(R) mutants. Multiple MRSA PC190723(R) FtsZ mutants also displayed attenuated virulence and restored susceptibility to ß-lactam antibiotics in vitro and in a mouse model of imipenem efficacy. Collectively, these data support a target-based approach to rationally develop synergistic combination agents that mitigate drug resistance and effectively treat MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Division/drug effects , Crystallography, X-Ray , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Drug Resistance, Bacterial/drug effects , Drug Synergism , Gene Regulatory Networks/genetics , Guanosine Diphosphate , Imipenem/pharmacology , Methicillin-Resistant Staphylococcus aureus/cytology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Mutation/genetics , Protein Structure, Secondary , Protein Transport/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Thiazoles/chemistry , Thiazoles/pharmacology , Virulence/drug effects , beta-Lactams/therapeutic use
14.
J Med Chem ; 54(12): 4092-108, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21608528

ABSTRACT

c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzocycloheptenes/chemical synthesis , Pyridines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzocycloheptenes/pharmacokinetics , Benzocycloheptenes/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor , Female , Haplorhini , Humans , Mice , Mice, Nude , Models, Molecular , Mutation , Neoplasm Transplantation , Phosphorylation , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Receptor Protein-Tyrosine Kinases/genetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Transplantation, Heterologous
15.
J Biol Chem ; 286(13): 11218-25, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21247903

ABSTRACT

The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix αC and the G loop to generate a viable active site. Helix αC adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.


Subject(s)
Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/chemistry , Animals , Cell Line , Crystallography, X-Ray , Drug Design , Humans , Phosphorylation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Spodoptera , Structure-Activity Relationship , c-Mer Tyrosine Kinase
16.
BMC Struct Biol ; 10: 16, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20540760

ABSTRACT

BACKGROUND: The unique S28 family of proteases is comprised of the carboxypeptidase PRCP and the aminopeptidase DPP7. The structural basis of the different substrate specificities of the two enzymes is not understood nor has the structure of the S28 fold been described. RESULTS: The experimentally phased 2.8 A crystal structure is presented for human PRCP. PRCP contains an alpha/beta hydrolase domain harboring the catalytic Asp-His-Ser triad and a novel helical structural domain that caps the active site. Structural comparisons with prolylendopeptidase and DPP4 identify the S1 proline binding site of PRCP. A structure-based alignment with the previously undescribed structure of DPP7 illuminates the mechanism of orthogonal substrate specificity of PRCP and DPP7. PRCP has an extended active-site cleft that can accommodate proline substrates with multiple N-terminal residues. In contrast, the substrate binding groove of DPP7 is occluded by a short amino-acid insertion unique to DPP7 that creates a truncated active site selective for dipeptidyl proteolysis of N-terminal substrates. CONCLUSION: The results define the structure of the S28 family of proteases, provide the structural basis of PRCP and DPP7 substrate specificity and enable the rational design of selective PRCP modulators.


Subject(s)
Carboxypeptidases/chemistry , Amino Acid Sequence , Binding Sites , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Catalytic Domain , Crystallography, X-Ray , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
17.
Article in English | MEDLINE | ID: mdl-20516604

ABSTRACT

Prolylcarboxypeptidase (PrCP) is a lysosomal serine carboxypeptidase that cleaves a variety of C-terminal amino acids adjacent to proline and has been implicated in diseases such as hypertension and obesity. Here, the robust production, purification and crystallization of glycosylated human PrCP from stably transformed CHO cells is described. Purified PrCP yielded crystals belonging to space group R32, with unit-cell parameters a = b = 181.14, c = 240.13 A, that diffracted to better than 2.8 A resolution.


Subject(s)
Carboxypeptidases/chemistry , Animals , CHO Cells , Carboxypeptidases/genetics , Carboxypeptidases/isolation & purification , Cricetinae , Cricetulus , Crystallization , Crystallography, X-Ray , Gene Expression , Glycosylation , Humans
18.
J Biol Chem ; 285(7): 4587-94, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-19864428

ABSTRACT

p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3'-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3'-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.


Subject(s)
Ribosomal Protein S6 Kinases, 70-kDa/chemistry , Chromatography, Gel , Crystallography, X-Ray , Humans , Phosphorylation , Polymerase Chain Reaction , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Staurosporine/metabolism , Ultracentrifugation
19.
J Pharmacol Exp Ther ; 323(2): 692-700, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17671099

ABSTRACT

Selective activation of the neuropeptide Y (NPY)2 receptor to suppress appetite provides a promising approach to obesity management. A selective NPY2 polyethylene glycol-conjugated (PEGylated) peptide agonist is described that consists of a peptide core corresponding to residues 13 to 36 of human peptide YY (PYY) and a nonpeptidic moiety (2-mercaptonicotinic acid) at the peptide N terminus that is derivatized with 20-kDa monomethoxypolyethylene glycol. The PEGylated peptide elicits a dose-dependent reduction in food intake in lean C57BL/6 mice and Wistar rats that persists for 72 and 48 h, respectively. The effect on food intake in lean C57BL/6 mice is blocked by the selective NPY2 antagonist BIIE0246 (N-[(1S)-4-[(aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide formate). A dose-dependent reduction in body weight in diet-induced obese (DIO) mice is seen following daily dosing for 14 days. The reduction in body weight is sustained following dosing for 40 days, and it is accompanied by an increase in plasma adiponectin. Improvements in glucose disposal and in plasma insulin and glucose levels that are risk factors for type II diabetes are observed following once-daily subcutaneous dosing in DIO mice. The results provide evidence from two animal species that the long-acting selective NPY2 peptide agonist has potential for obesity management.


Subject(s)
Appetite Depressants/pharmacology , Body Weight/drug effects , Eating/drug effects , Glucose/metabolism , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Polyethylene Glycols/pharmacology , Receptors, Neuropeptide Y/agonists , Adiponectin/blood , Animals , Arginine/analogs & derivatives , Arginine/pharmacology , Benzazepines/pharmacology , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Structure-Activity Relationship
20.
Hybridoma (Larchmt) ; 26(3): 168-72, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17600499

ABSTRACT

An IgG mouse monoclonal antibody (10F05) against polyethylene glycol has been generated. The antibody reacts with PEG regardless of the linker used for PEG attachment, and is able to recognize a PEGylated peptide in plasma at concentrations as low as 3 pg/mL. The antibody is readily purified in substantial quantities. The PEG IgG will find significant utility in the sensitive detection of PEG derivitives during the pharmacokinetic characterization of PEGylated compounds.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Polyethylene Glycols/chemistry , Animals , Antigens/chemistry , Enzyme-Linked Immunosorbent Assay , Hemocyanins/immunology , Hybridomas/immunology , Immunoglobulin G/biosynthesis , Mice , Mice, Inbred BALB C , Peptides/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...