Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 2(6): 150193, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26543590

ABSTRACT

[This corrects the article DOI: 10.1098/rsos.140292.].

2.
R Soc Open Sci ; 2(4): 140292, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26064629

ABSTRACT

Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)-making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance.

3.
J Phys Condens Matter ; 26(49): 495401, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25398161

ABSTRACT

Classical molecular dynamics simulations have been performed on uranium dioxide (UO2) employing a recently developed many-body potential model. Thermal conductivities are computed for a defect free UO2 lattice and a radiation-damaged, defect containing lattice at 300 K, 1000 K and 1500 K. Defects significantly degrade the thermal conductivity of UO2 as does the presence of amorphous UO2, which has a largely temperature independent thermal conductivity of ∼1.4 Wm(-1) K(-1). The model yields a pre-melting superionic transition temperature at 2600 K, very close to the experimental value and the mechanical melting temperature of 3600 K, slightly lower than those generated with other empirical potentials. The average threshold displacement energy was calculated to be 37 eV. Although the spatial extent of a 1 keV U cascade is very similar to those generated with other empirical potentials and the number of Frenkel pairs generated is close to that from the Basak potential, the vacancy and interstitial cluster distribution is different.

4.
Nat Commun ; 5: 4797, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25175931

ABSTRACT

Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.


Subject(s)
Alphaproteobacteria/chemistry , Ferrosoferric Oxide/chemistry , Iron/chemistry , Magnetosomes/chemistry , Sulfides/chemistry , Alphaproteobacteria/metabolism , Alphaproteobacteria/ultrastructure , Aquatic Organisms , Black Sea , Estuaries , Iron/metabolism , Magnetic Resonance Spectroscopy , Magnetosomes/metabolism , Magnetosomes/ultrastructure
5.
Appl Radiat Isot ; 89: 25-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24576993

ABSTRACT

The aim of this work is to understand the effect of gamma irradiation on commercial TiO2 photocatalyst for water treatment applications. Previous studies concluded that gamma-irradiation is able to modify the electronic properties of TiO2 based photocatalysts and consequently their photocatalytic performance. However, there are some discrepancies in the literature where on one hand a significant enhancement of the material properties is reported and on the other hand only a weak effect is observed. In this study a surface effect on TiO2 is confirmed by using low and medium gamma irradiation doses.


Subject(s)
Gamma Rays , Titanium/radiation effects , Catalysis , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Water Purification/methods
6.
J Phys Condens Matter ; 25(35): 355402, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23917071

ABSTRACT

The radiation response of TiO2 has been studied using molecular dynamics. The simulations are motivated by experimental observations that the three low-pressure polymorphs, rutile, brookite and anatase, exhibit vastly different tolerances to amorphization under ion-beam irradiation. To understand the role of structure we perform large numbers of simulations using the small thermal spike method. We quantify to high statistical accuracy the number of defects created as a function of temperature and structure type, and reproduce all the main trends observed experimentally. To evaluate a hypothesis that volumetric strain relative to the amorphous phase is an important driving force for defect recovery, we perform spike simulations in which the crystalline density is varied over a wide range. Remarkably, the large differences between the polymorphs disappear once the density difference is taken into account. This finding demonstrates that density is an important factor which controls radiation tolerance in TiO2.


Subject(s)
Heavy Ions , Models, Chemical , Models, Molecular , Temperature , Titanium/chemistry , Titanium/radiation effects , Computer Simulation , Molecular Conformation/radiation effects , Radiation Dosage , Stress, Mechanical
7.
Science ; 236(4808): 1556-9, 1987 Jun 19.
Article in English | MEDLINE | ID: mdl-17835739

ABSTRACT

A natural single crystal of zircon, ZrSiO(4,) from Sri Lanka exhibited zonation due to alpha-decay damage. The zones vary in thickness on a scale from one to hundreds of micrometers. The uranium and thorium concentrations vary from zone to zone such that the alpha-decay dose is between 0.2 x 10(16) and 0.8 x 10(16) alpha-events per milligram (0.15 to 0.60 displacement per atom). The transition from the crystalline to the aperiodic metamict state occurs over this dose range. Differential expansion of individual layers due to variations in their alpha-decay dose caused a systematic pattern of fractures that do not propagate across aperiodic layers. High-resolution transmission electron microscopy revealed a systematic change in the microstructure from a periodic atomic array to an aperiodic array with increasing alpha-decay dose. At doses greater than 0.8 x 10(16) alpha-events per milligram there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides.

SELECTION OF CITATIONS
SEARCH DETAIL
...