Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Chem ; 9: 778140, 2021.
Article in English | MEDLINE | ID: mdl-34869225

ABSTRACT

In this article we provide some perspectives on a range of pyrochlore and defect fluorite type compounds with nominal A2B2O7, A2BO5, ABC2O7, and other stoichiometries. Typically, the phase transformations and stability fields in these systems are mapped as a function of the ionic radii of the A and B-site cations, e.g., the A/B cation radius ratio (rA/rB). This provides a useful guide to compatible structures and compositions for the development of advanced materials. Pyrochlore commonly transforms to a defect fluorite structure at high temperature in many systems; however, it is not uncommon to observe defect fluorite as the initial metastable phase at low temperature. The patterns of order-disorder observed in these materials are primarily due to the energetics of layer stacking, the defect formation and migration energies of cations and anions, or modulations of the parent cubic structure in 3 + n dimensional space. The first lead to predominantly non-cubic derivatives of the parent defect fluorite structure (e.g., zirconolite polytypes), the second control the order-disorder processes, and the latter lead to a variety of subtle additional scattering features within the cubic parent structure. Although the energetics of cation disorder and anion-vacancy disorder have become more accessible via atomistic approaches (e.g., MD and DFT), we continue to find interesting physical-chemical problems in these materials. For example, although there are significant differences in composition (Tb/Zr ratio and O content) between Tb2Zr2O7 and Tb2ZrO5, both of which are defect fluorites, we note that the modulations found in these two compounds by electron scattering are virtually identical with regard to the direction and magnitude of displacement from the normal Bragg diffracted beams. This suggests that neither the A/B cation ratio nor the oxygen stoichiometry have a significant effect on the modulations. The general observations on the systems of compounds noted in this paper rest primarily in the context of industrial materials for nuclear waste disposal, potential applications in inert matrix fuel designs, and other important technological applications such as ionic conductivity, electrical conductivity, and magnetism. Scientific advances in these areas have been underpinned by recent advances in ion irradiation, synchrotron X-ray, neutron scattering, and modelling and simulation capabilities. Furthermore, there has been some renewed interest in natural samples, e.g., Th-U zirconolite and pyrochlore as analogues for potential host phases in nuclear waste forms. In particular, the natural pyrochlores have provided additional details with regard to radiation damage ingrowth, percolation transitions, and the relationships between accumulated dose and physical properties including hardness, elastic modulus. Specific details of the thermal annealing of these samples have also been elucidated in considerable detail.

2.
Front Chem ; 9: 706736, 2021.
Article in English | MEDLINE | ID: mdl-34858941

ABSTRACT

We have examined the irradiation response of a titanate and zirconate pyrochlore-both of which are well studied in the literature individually-in an attempt to define the appearance of defect fluorite in zirconate pyrochlores. To our knowledge this study is unique in that it attempts to discover the mechanism of formation by a comparison of the different systems exposed to the same conditions and then examined via a range of techniques that cover a wide length scale. The conditions of approximately 1 displacement per atom via He2+ ions were used to simulate long term waste storage conditions as outlined by previous results from Ewing in a large enough sample volume to allow for neutron diffraction, as not attempted previously. The titanate sample, used as a baseline comparison since it readily becomes amorphous under these conditions behaved as expected. In contrast, the zirconate sample accumulates tensile stress in the absence of detectable strain. We propose this is analogous to the lanthanide zirconate pyrochlores examined by Simeone et al. where they reported the appearance of defect fluorite diffraction patterns due to a reduction in grain size. Radiation damage and stress results in the grains breaking into even smaller crystallites, thus creating even smaller coherent diffraction domains. An (ErNd)2(ZrTi)2O7 pyrochlore was synthesized to examine which mechanism might dominate, amorphization or stress/strain build up. Although strain was detected in the pristine sample via Synchrotron X-ray diffraction it was not of sufficient quality to perform a full analysis on.

3.
Front Chem ; 7: 13, 2019.
Article in English | MEDLINE | ID: mdl-30805329

ABSTRACT

In this study, we present a new concept based on the steady-state, laser-induced photoluminescence of Nd3+, which aims at a direct determination of the amorphous fraction f a in monazite- and xenotime-type orthophosphates on a micrometer scale. Polycrystalline, cold-pressed, sintered LaPO4, and YPO4 ceramics were exposed to quadruple Au-ion irradiation with ion energies 35 MeV (50% of the respective total fluence), 22 MeV (21%), 14 MeV (16%), and 7 MeV (13%). Total irradiation fluences were varied in the range 1.6 × 1013-6.5 × 1013 ions/cm2. Ion-irradiation resulted in amorphization and damage accumulation unto a depth of ~5 µm below the irradiated surfaces. The amorphous fraction created was quantified by means of surface-sensitive grazing-incidence X-ray diffraction and photoluminescence spectroscopy using state-of-the-art confocal spectrometers with spatial resolution in the µm range. Monazite-type LaPO4 was found to be more susceptible to ion-irradiation induced damage accumulation than xenotime-type YPO4. Transmission electron microscopy of lamella cut from irradiated surfaces with the focused-ion beam technique confirmed damage depth-profiles with those obtained from PL hyperspectral mapping. Potential analytical advantages that arise from an improved characterization and quantification of radiation damage (i.e., f a) on the µm-scale are discussed.

4.
Acta Crystallogr A Found Adv ; 71(Pt 5): 473-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26317191

ABSTRACT

The interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens is examined. It is found that in general there are odd symmetries in experimental electron nanodiffraction patterns. Using simulation, it is demonstrated that this effect can be attributed to dynamical scattering, rather than other divergences from the ideal experimental conditions such as probe-forming lens aberrations and camera noise. The departure of opposing diffracted intensities from Friedel's law in the phase grating formalism is calculated using a general structure factor for disordered materials. On the basis of this, a simple correction procedure is suggested to recover the kinematical angular symmetries, and thus readily interpretable information that reflects the symmetries of the original projected object. This correction is numerically tested using both the phase object and multislice calculations, and is demonstrated to fully recover all the kinematical diffracted symmetries from a simulated atomic model of a metallic glass.

5.
Phys Chem Chem Phys ; 17(14): 9049-59, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25754713

ABSTRACT

A combination of (89)Y and (119)Sn NMR spectroscopy and DFT calculations are used to investigate phase evolution, local structure and disorder in Y2Zr2-xSnxO7 ceramics, where a phase change is predicted, from pyrochlore to defect fluorite, with increasing Zr content. The ability of NMR to effectively probe materials that exhibit positional and compositional disorder provides insight into the atomic-scale structure in both ordered and disordered phases and, by exploiting the quantitative nature of the technique, we are able to determine detailed information on the composition of the phase(s) present and the average coordination number (and next-nearest neighbour environment) of the cations. In contrast to previous studies, a more complex picture of the phase variation with composition emerges, with single-phase pyrochlore found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.6. A broad two-phase region is observed, from x = 1.8 to 0.8, but the two phases present have very different composition, with a maximum of 13% Zr incorporated into the pyrochlore phase, whereas the composition of the defect fluorite phase varies throughout. Preferential ordering of the anion vacancies in the defect fluorite phase is observed, with Sn only ever found in a six-coordinate environment, while remaining vacancies are shown to be more likely to be associated with Zr than Y. Our findings are then discussed in the light of those from previous studies, many of which utilize diffraction-based approaches, where, in most cases, a single phase of fixed composition has been assumed for the refinement procedure. The significant and surprising differences encountered demonstrate the need for complementary approaches to be considered for a detailed and accurate picture of both the long- and short-range structure of a solid to be achieved.

6.
Inorg Chem ; 53(13): 6761-8, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24926643

ABSTRACT

Cerium titanate CeTi2O6 was prepared by a new soft chemistry route in aqueous solution. A suite of characterization techniques, including X-ray diffraction, thermal analysis, vibrational spectroscopy, and scanning and transmission electron spectroscopy, were employed to investigate the brannerite structure formation and its bulk properties. The synthesized powder formed the brannerite crystal structure upon calcination at temperatures as low as 800 °C. Samples sintered at 1350 °C possess a high level of crystallinity. X-ray absorption near-edge structure results indicate the presence of six-coordinated Ce(4+) in the brannerite samples.

7.
Environ Sci Technol ; 46(20): 11128-34, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23013221

ABSTRACT

Uranium (U(VI)) sorption in systems containing titanium dioxide (TiO(2)) and various Fe(III)-oxide phases was investigated in the acidic pH range (pH 2.5-6). Studies were conducted with physical mixtures of TiO(2) and ferrihydrite, TiO(2) with coprecipitated ferrihydrite, and with systems where Fe(III) was mostly present as crystalline Fe(III) oxides. The presence of ferrihydrite resulted in decreased U(VI) sorption relative to the pure TiO(2) systems, particularly below pH 4, an unexpected result given that the presence of another sorbent would be expected to increase U(VI) uptake. In mixtures of TiO(2) and crystalline Fe(III) oxide phases, U(VI) sorption was higher than for the analogous mixtures of TiO(2) with ferrihydrite, and was similar to U(VI) sorption on TiO(2) alone. X-ray absorption spectroscopy of the TiO(2) system with freshly precipitated Fe(III) oxides indicated the presence of an Fe(III) surface phase that inhibits U(VI) sorption-a reaction whereby Fe(III) precipitates as lepidocrocite and/or ferrihydrite effectively blocking surface sorption sites on the underlying TiO(2). Competition between dissolved Fe(III) and U(VI) for sorption sites may also contribute to the observed decrease in U(VI) sorption. The present study demonstrates the complexity of sorption in mixed systems, where the oxide phases do not necessarily behave in an additive manner, and has implications for U(VI) mobility in natural and impacted environments where Fe(III) (oxyhydr)oxides are usually assumed to increase the retention of U(VI).


Subject(s)
Environmental Pollutants/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Titanium/chemistry , Uranium/chemistry , Adsorption , Kinetics , Models, Chemical
8.
Environ Sci Technol ; 45(13): 5536-42, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21618967

ABSTRACT

Titanium dioxide (TiO(2)) has often served as a model substrate for experimental sorption studies of environmental contaminants. However, various forms of Ti-oxide have been used, and the different sorption properties of these materials have not been thoroughly studied. We investigated uranium sorption on some thoroughly characterized TiO(2) surfaces with particular attention to the influence of surface area, surface charge, and impurities. The sorption of U(VI) differed significantly between samples. Aggressive pretreatment of one material to remove impurities significantly altered the isoelectric point, determined by an electroacoustic method, but did not significantly impact U sorption. Differences in sorption properties between the various TiO(2) materials were related to the crystallographic form, morphology, surface area, and grain size, rather than to surface impurities or surface charge. In-situ attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopic studies showed that the spectra of the surface species of the TiO(2) samples are not significantly different, suggesting the formation of similar surface complexes. The data provide insights into the effect of different source materials and surface properties on radionuclide sorption.


Subject(s)
Surface Properties , Titanium/chemistry , Uranium/chemistry , Absorption , Chromatography, Ion Exchange , Isoelectric Point , Mass Spectrometry , Microscopy, Electron, Transmission , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
J Phys Chem B ; 110(21): 10358-64, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16722740

ABSTRACT

The yttrium local environment in the series of pyrochlores Y2Ti2-xSnxO7 was studied using 89Y NMR. Oxides with the pyrochlore structure exhibit a range of interesting physical and chemical properties, resulting in many technological applications, including the encapsulation of lanthanide- and actinide-bearing radioactive waste. The use of the nonradioactive Y3+ cation provides a sensitive probe for any changes in the local structure and ordering with solid solution composition, through 89Y (I = 1/2) NMR. We confirm that a single pyrochlore phase is formed over the entire compositional range, with Y found only on the eight-coordinated A site. A significant (approximately 15 ppm) chemical shift is observed for each Sn substituted into the Y second neighbor coordination environment. The spectral signal intensities of the possible combinations of Sn/Ti neighbors match those predicted statistically assuming a random distribution of Sn4+/Ti4+ on the six-coordinated pyrochlore B site.

10.
Acta Crystallogr B ; 62(Pt 1): 60-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16434793

ABSTRACT

The crystal structures of Nd(0.7)Ti(0.9)Al(0.1)O3, taken to represent the ideal Nd(2/3)TiO3, have been elucidated from 4 to 1273 K using high-resolution neutron powder diffraction in combination with group-theoretical analysis. The room-temperature structure is monoclinic in C2/m, on a cell with a = 7.6764 (1), b = 7.6430 (1), c = 7.7114 (1) A, beta = 90.042 (2) degrees . Pertinent features are the layered ordering of the A-site Nd cations/vacancies along the z axis and out-of-phase tilting of the (Ti/Al)O6 octahedra around both the x and z axes. From about 750 to 1273 K, the octahedra are tilted around just one axis (x axis) perpendicular to the direction of the cation ordering, giving rise to an orthorhombic structure with space-group symmetry Cmmm.

SELECTION OF CITATIONS
SEARCH DETAIL
...