Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cancer Med ; 13(4): e7051, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457211

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is commonly diagnosed among older women who have comorbidities. This hypothesis-free phenome-wide association study (PheWAS) aimed to identify comorbidities associated with OC, as well as traits that share a genetic architecture with OC. METHODS: We used data from 181,203 white British female UK Biobank participants and analysed OC and OC subtype-specific genetic risk scores (OC-GRS) for an association with 889 diseases and 43 other traits. We conducted PheWAS and colocalization analyses for individual variants to identify evidence for shared genetic architecture. RESULTS: The OC-GRS was associated with 10 diseases, and the clear cell OC-GRS was associated with five diseases at the FDR threshold (p = 5.6 × 10-4 ). Mendelian randomizaiton analysis (MR) provided robust evidence for the association of OC with higher risk of "secondary malignant neoplasm of digestive systems" (OR 1.64, 95% CI 1.33, 2.02), "ascites" (1.48, 95% CI 1.17, 1.86), "chronic airway obstruction" (1.17, 95% CI 1.07, 1.29), and "abnormal findings on examination of the lung" (1.51, 95% CI 1.22, 1.87). Analyses of lung spirometry measures provided further support for compromised respiratory function. PheWAS on individual OC variants identified five genetic variants associated with other diseases, and seven variants associated with biomarkers (all, p ≤ 4.5 × 10-8 ). Colocalization analysis identified rs4449583 (from TERT locus) as the shared causal variant for OC and seborrheic keratosis. CONCLUSIONS: OC is associated with digestive and respiratory comorbidities. Several variants affecting OC risk were associated with other diseases and biomarkers, with this study identifying a novel genetic locus shared between OC and skin conditions.


Subject(s)
Genome-Wide Association Study , Ovarian Neoplasms , Humans , Female , Aged , Comorbidity , Biomarkers , Phenotype , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis
2.
Mol Cell Endocrinol ; 578: 112072, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739120

ABSTRACT

The lining of our intestinal surface contains an array of hormone-producing cells that are collectively our bodies' largest endocrine cell reservoir. These "enteroendocrine" (EE) cells reside amongst the billions of absorptive epithelial and other cell types that line our gastrointestinal tract and can sense and respond to the ever-changing internal environment in our gut. EE cells release an array of important signalling molecules that can act as hormones, including glucagon-like peptide (GLP-1) and peptide YY (PYY) which are co-secreted from L cells. While much is known about the effects of these hormones on metabolism, insulin secretion and food intake, less is understood about their secretion from human intestinal tissue. In this study we assess whether GLP-1 and PYY release differs across human small and large intestinal tissue locations within the gastrointestinal tract, and/or by sex, body weight and the age of an individual. We identify that the release of both hormones is greater in more distal regions of the human colon, but is not different between sexes. We observe a negative correlation of GLP-1 and BMI in the small, but not large, intestine. Increased aging correlates with declining secretion of both GLP-1 and PYY in human large, but not small, intestine. When the data for large intestine is isolated by region, this relationship with age remains significant for GLP-1 in the ascending and descending colon and in the descending colon for PYY. This is the first demonstration that site-specific differences in GLP-1 and PYY release occur in human gut, as do site-specific relationships of L cell secretion with aging and body mass.

3.
Eur J Clin Invest ; 53(10): e14037, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37303098

ABSTRACT

BACKGROUND: Cancer is a leading cause of morbidity and mortality worldwide, and better understanding of the risk factors could enhance prevention. METHODS: We conducted a hypothesis-free analysis combining machine learning and statistical approaches to identify cancer risk factors from 2828 potential predictors captured at baseline. There were 459,169 UK Biobank participants free from cancer at baseline and 48,671 new cancer cases during the 10-year follow-up. Logistic regression models adjusted for age, sex, ethnicity, education, material deprivation, smoking, alcohol intake, body mass index and skin colour (as a proxy for sun sensitivity) were used for obtaining adjusted odds ratios, with continuous predictors presented using quintiles (Q). RESULTS: In addition to smoking, older age and male sex, positively associating features included several anthropometric characteristics, whole body water mass, pulse, hypertension and biomarkers such as urinary microalbumin (Q5 vs. Q1 OR 1.16, 95% CI = 1.13-1.19), C-reactive protein (Q5 vs. Q1 OR 1.20, 95% CI = 1.16-1.24) and red blood cell distribution width (Q5 vs. Q1 OR 1.18, 95% CI = 1.14-1.21), among others. High-density lipoprotein cholesterol (Q5 vs. Q1 OR 0.84, 95% CI = 0.81-0.87) and albumin (Q5 vs. Q1 OR 0.84, 95% CI = 0.81-0.87) were inversely associated with cancer. In sex-stratified analyses, higher testosterone increased the risk in females but not in males (Q5 vs. Q1 ORfemales 1.23, 95% CI = 1.17-1.30). Phosphate was associated with a lower risk in females but a higher risk in males (Q5 vs. Q1 ORfemales 0.94, 95% CI = 0.90-0.99 vs. ORmales 1.09, 95% CI 1.04-1.15). CONCLUSIONS: This hypothesis-free analysis suggests personal characteristics, metabolic biomarkers, physical measures and smoking as important predictors of cancer risk, with further studies needed to confirm causality and clinical relevance.


Subject(s)
Neoplasms , Female , Humans , Male , Risk Factors , Neoplasms/epidemiology , Smoking/epidemiology , C-Reactive Protein , Biomarkers
4.
Clin Nutr ; 42(1): 1-8, 2023 01.
Article in English | MEDLINE | ID: mdl-36473423

ABSTRACT

BACKGROUND & AIMS: Milk consumption is a modifiable lifestyle factor that has been associated with several cancer types in observational studies. Limited evidence exists regarding the causality of these relationships. Using a genetic variant (rs4988235) near the lactase gene (LCT) locus that proxies milk consumption, we conducted a comprehensive survey to assess potential causal relationships between milk consumption and 12 types of cancer. METHODS: Our analyses were conducted using white British participants of the UK Biobank (n = up to 255,196), the FinnGen cohort (up to 260,405), and available cancer consortia. We included cancers with previous evidence of an association with milk consumption in observational studies, as well as cancers common in both UK Biobank and FinnGen populations (>1000 cases). We evaluated phenotypic associations of milk intake and cancer incidence in the UK Biobank, and then used a Mendelian randomisation (MR) approach to assess causality in the UK Biobank, FinnGen consortium, and combined analyses incorporating additional consortia data for five cancers. In MR meta-analyses, case numbers for cancers of breast, ovary, uterus, cervix, prostate, bladder and urinary tract, colorectum, and lung ranged between 6000 and 148,000 cases, and between 780 and 1342 cases for cancers of the liver, mouth, stomach and diffuse large B-cell lymphoma. RESULTS: In observational analyses, milk consumption was associated with higher risk of bladder and urinary tract cancer (OR 1.23, 95% CI 1.03-1.47), but not with any other cancer. This association was not confirmed in the MR analysis, and genetically predicted milk consumption showed a significant association only with lower risk of colorectal cancer (0.89, 0.81-0.98 per additional 50 g/day). In the MR analyses conducted among individual cohorts, genetically predicted milk consumption provided evidence for an association with lower colorectal cancer in the FinnGen cohort (0.85, 0.74-0.97), and in the UK Biobank greater risk of female breast cancer (1.12, 1.03-1.23), and uterine cancer in pre-menopausal females (3.98, 1.48-10.7). CONCLUSION: In a comprehensive survey of milk-cancer associations, we confirm of a protective role of milk consumption for colorectal cancer. Our analyses also provide some suggestion for higher risks of breast cancer and premenopausal uterine cancer, warranting further investigation.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Uterine Neoplasms , Male , Female , Humans , Animals , Milk/adverse effects , Mendelian Randomization Analysis , Risk Factors , Polymorphism, Single Nucleotide/genetics
5.
Diabetes Obes Metab ; 25(1): 121-131, 2023 01.
Article in English | MEDLINE | ID: mdl-36053807

ABSTRACT

AIMS: To evaluate associations of metabolic profiles and biomarkers with brain atrophy, lesions, and iron deposition to understand the early risk factors associated with dementia. MATERIALS AND METHODS: Using data from 26 239 UK Biobank participants free from dementia and stroke, we assessed the associations of metabolic subgroups, derived using an artificial neural network approach (self-organizing map), and 39 individual biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume (GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyperintensity (WMH) volume, and caudate iron deposition. RESULTS: In metabolic subgroup analyses, participants characterized by high triglycerides and liver enzymes showed the most adverse brain outcomes compared to the healthy reference subgroup with high-density lipoprotein cholesterol and low body mass index (BMI) including associations with GMV (ßstandardized -0.20, 95% confidence interval [CI] -0.24 to -0.16), HV (ßstandardized -0.09, 95% CI -0.13 to -0.04), WMH volume (ßstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition (ßstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the subgroup with high BMI, C-reactive protein and cystatin C, and the subgroup with high blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associations were seen between basal metabolic rate (BMR) and caudate iron deposition (ßstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (ßstandardized -0.15, 95% CI -0.16 to -0.14) and HV (ßstandardized -0.11, 95% CI -0.12 to -0.10), and between BP and WMH volume (ßstandardized 0.13, 95% CI 0.12 to 0.14 for diastolic BP). CONCLUSIONS: Metabolic profiles were associated differentially with brain neuroimaging characteristics. Associations of BMR, BP and other individual biomarkers may provide insights into actionable mechanisms driving these brain associations.


Subject(s)
Dementia , Metabolome , Humans , Brain/diagnostic imaging , Iron
6.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235559

ABSTRACT

Genetic susceptibility and lifestyle affect the risk of dementia but there is little direct evidence for their associations with preclinical changes in brain structure. We investigated the association of genetic dementia risk and healthy lifestyle with brain morphometry, and whether effects from elevated genetic risk are modified by lifestyle changes. We used prospective data from up to 25,894 UK Biobank participants (median follow-up of 8.8 years), and defined healthy lifestyle according to American Heart Association criteria as BMI < 30, no smoking, healthy diet and regular physical activity). Higher genetic risk was associated with lower hippocampal volume (beta −0.16 cm3, 95% CI −0.22, −0.11) and total brain volume (−4.34 cm3, 95% CI −7.68, −1.01) in participants aged ≥60 years but not <60 years. Healthy lifestyle was associated with higher total brain, grey matter and hippocampal volumes, and lower volume of white matter hyperintensities, with no effect modification by age or genetic risk. In conclusion, adverse effects of high genetic risk on brain health were only found in older participants, while adhering to healthy lifestyle recommendations is beneficial regardless of age or genetic risk.


Subject(s)
Dementia , Gene-Environment Interaction , Aged , Biological Specimen Banks , Brain/diagnostic imaging , Healthy Lifestyle , Humans , Prospective Studies , Risk Factors , United Kingdom
7.
Microorganisms ; 10(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35208767

ABSTRACT

Prevalence of dengue retinopathy varies across epidemics, with the disease linked to circulation of dengue virus serotype 1 (DENV-1). The retinal pigment epithelium has been implicated in the pathology. We investigated infectivity, molecular response, and barrier function of epithelial cells inoculated with DENV strains from different outbreaks in Singapore. Monolayers of human retinal pigment epithelial cells (multiple primary cell isolates and the ARPE-19 cell line) were inoculated with six DENV strains, at multiplicity of infection of 10; uninfected and recombinant strain-infected controls were included where relevant. Infectivity and cell response were assessed primarily by RT-qPCR on total cellular RNA, and barrier function was evaluated as electrical resistance across monolayers. Higher viral RNA loads were measured in human retinal pigment epithelial cells infected with DENV-1 strains from the 2005 Singapore epidemic, when retinopathy was prevalent, versus DENV-1 strains from the 2007 Singapore epidemic, when retinopathy was not observed. Type I interferon (IFN) transcripts (IFN-ß and multiple IFN-stimulated genes) were up-regulated, and impact on barrier function was more pronounced, for cells infected with DENV-1 strains from the 2005 versus the 2007 Singapore epidemics. Aside from serotype, strain of DENV may determine the potential to induce retinal pathology. Identification of molecular markers of disease-associated DENV strains may provide insights into the pathogenesis of dengue retinopathy.

8.
Gastroenterology ; 161(2): 536-547.e2, 2021 08.
Article in English | MEDLINE | ID: mdl-33848536

ABSTRACT

OBJECTIVE: Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN: GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS: Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION: Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.


Subject(s)
Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/metabolism , Peptide YY/metabolism , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , Autocrine Communication , Blood Glucose/metabolism , Case-Control Studies , Enteroendocrine Cells/drug effects , Glucose/administration & dosage , Glucose Tolerance Test , Humans , Intestinal Mucosa/drug effects , Loss of Function Mutation , Paracrine Communication , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/genetics , Secretory Pathway , Signal Transduction , Time Factors , alpha-MSH/pharmacology
9.
EBioMedicine ; 59: 102954, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32818802

ABSTRACT

BACKGROUND: The three main alleles of the APOE gene (ε4, ε3 and ε2) carry differential risks for conditions including Alzheimer's disease (AD) and cardiovascular disease. Due to their clinical significance, we explored disease associations of the APOE genotypes using a hypothesis-free, data-driven, phenome-wide association study (PheWAS) approach. METHODS: We used data from the UK Biobank to screen for associations between APOE genotypes and over 950 disease outcomes using genotype ε3ε3 as a reference. Data was restricted to 337,484 white British participants (aged 37-73 years). FINDINGS: After correction for multiple testing, PheWAS analyses identified associations with 37 outcomes, representing 18 distinct diseases. As expected, ε3ε4 and ε4ε4 genotypes associated with increased odds of AD (p ≤ 7.6 × 10-46), hypercholesterolaemia (p ≤ 7.1 × 10-17) and ischaemic heart disease (p ≤ 2.3 × 10-4), while ε2ε3 provided protection for the latter two conditions (p ≤ 3.7 × 10-10) compared to ε3ε3. In contrast, ε4-associated disease protection was seen against obesity, chronic airway obstruction, type 2 diabetes, gallbladder disease, and liver disease (all p ≤ 5.2 × 10-4) while ε2ε2 homozygosity increased risks of peripheral vascular disease, thromboembolism, arterial aneurysm, peptic ulcer, cervical disorders, and hallux valgus (all p ≤ 6.1 × 10-4). Sensitivity analyses using brain neuroimaging, blood biochemistry, anthropometric, and spirometric biomarkers supported the PheWAS findings on APOE associations with respective disease outcomes. INTERPRETATION: PheWAS confirms strong associations between APOE and AD, hypercholesterolaemia, and ischaemic heart disease, and suggests potential ε4-associated disease protection and harmful effects of the ε2ε2 genotype, for several conditions. FUNDING: National Health and Medical Research Council of Australia.


Subject(s)
Apolipoproteins E/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Adult , Aged , Alleles , Biological Specimen Banks , Case-Control Studies , Female , Humans , Male , Middle Aged , Phenotype , Population Surveillance , Registries , Risk Assessment , Risk Factors , United Kingdom/epidemiology
10.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31536477

ABSTRACT

Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intracolonic administration of individual TGR5, MrgprA3, or MrgprC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Coadministration of these agonists as an "itch cocktail" augmented hypersensitivity to colorectal distension and changed mouse behavior. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5, as well as the human ortholog MrgprX1, and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders.


Subject(s)
Abdominal Pain/physiopathology , Colon/innervation , Intestinal Mucosa/innervation , Irritable Bowel Syndrome/physiopathology , Sensory Receptor Cells/metabolism , Abdominal Pain/etiology , Adolescent , Adult , Animals , Colon/physiopathology , Disease Models, Animal , Female , Ganglia, Spinal/cytology , Healthy Volunteers , Humans , Intestinal Mucosa/physiopathology , Irritable Bowel Syndrome/chemically induced , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/pathology , Male , Mice , Middle Aged , Nociception/physiology , Receptors, G-Protein-Coupled/metabolism , Trinitrobenzenesulfonic Acid/toxicity , Young Adult
11.
Nutrients ; 11(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678223

ABSTRACT

Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.


Subject(s)
Body Weight , Carbohydrates/pharmacology , Enterochromaffin Cells/drug effects , Gastrointestinal Tract/cytology , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Male , Sex Factors
12.
Front Neurosci ; 12: 533, 2018.
Article in English | MEDLINE | ID: mdl-30150923

ABSTRACT

The overwhelming majority of dominant mutations causing early onset familial Alzheimer's disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid ß (Aß). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer's disease research for over two decades. Any challenge to this authority must offer an alternative explanation for the relationship between the PSEN genes and APP. In this paper, we explore one possible alternative relationship - the dysregulation of cellular iron homeostasis as a common effect of EOfAD mutations in these genes. This idea is attractive since it provides clear connections between EOfAD mutations and major characteristics of Alzheimer's disease such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism, and inflammation. We combine our ideas with observations by others to describe a "Stress Threshold Change of State" model of Alzheimer's disease that may begin to explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the disease. Directing research to investigate the role of dysregulation of iron homeostasis in EOfAD may be a profitable way forward in our struggle to understand this form of dementia.

13.
BMC Res Notes ; 11(1): 285, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29743093

ABSTRACT

OBJECTIVE: Regulation of intercellular adhesion molecule (ICAM)-1 in retinal endothelial cells is a promising druggable target for retinal vascular diseases. The ICAM-1-related (ICR) long non-coding RNA stabilizes ICAM-1 transcript, increasing protein expression. However, studies of ICR involvement in disease have been limited as the promoter is uncharacterized. To address this issue, we undertook a comprehensive in silico analysis of the human ICR gene promoter region. RESULTS: We used genomic evolutionary rate profiling to identify a 115 base pair (bp) sequence within 500 bp upstream of the transcription start site of the annotated human ICR gene that was conserved across 25 eutherian genomes. A second constrained sequence upstream of the orthologous mouse gene (68 bp; conserved across 27 Eutherian genomes including human) was also discovered. Searching these elements identified 33 matrices predictive of binding sites for transcription factors known to be responsive to a broad range of pathological stimuli, including hypoxia, and metabolic and inflammatory proteins. Five phenotype-associated single nucleotide polymorphisms (SNPs) in the immediate vicinity of these elements included four SNPs (i.e. rs2569693, rs281439, rs281440 and rs11575074) predicted to impact binding motifs of transcription factors, and thus the expression of ICR and ICAM-1 genes, with potential to influence disease susceptibility. We verified that human retinal endothelial cells expressed ICR, and observed induction of expression by tumor necrosis factor-α.


Subject(s)
Endothelial Cells/metabolism , Gene Expression Regulation , Intercellular Adhesion Molecule-1/genetics , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Retina/cytology , Alleles , Binding Sites , Humans , Intercellular Adhesion Molecule-1/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Binding , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism
14.
Int J Obes (Lond) ; 42(11): 1880-1889, 2018 11.
Article in English | MEDLINE | ID: mdl-29568107

ABSTRACT

BACKGROUND/OBJECTIVES: Evidence from animal studies highlights an important role for serotonin (5-HT), derived from gut enterochromaffin (EC) cells, in regulating hepatic glucose production, lipolysis and thermogenesis, and promoting obesity and dysglycemia. Evidence in humans is limited, although elevated plasma 5-HT concentrations are linked to obesity. SUBJECTS/METHODS: We assessed (i) plasma 5-HT concentrations before and during intraduodenal glucose infusion (4 kcal/min for 30 min) in non-diabetic obese (BMI 44 ± 4 kg/m2, N = 14) and control (BMI 24 ± 1 kg/m2, N = 10) subjects, (ii) functional activation of duodenal EC cells (immunodetection of phospho-extracellular related-kinase, pERK) in response to glucose, and in separate subjects, (iii) expression of tryptophan hydroxylase-1 (TPH1) in duodenum and colon (N = 39), and (iv) 5-HT content in primary EC cells from these regions (N = 85). RESULTS: Plasma 5-HT was twofold higher in obese than control responders prior to (P = 0.025), and during (iAUC, P = 0.009), intraduodenal glucose infusion, and related positively to BMI (R2 = 0.334, P = 0.003) and HbA1c (R2 = 0.508, P = 0.009). The density of EC cells in the duodenum was twofold higher at baseline in obese subjects than controls (P = 0.023), with twofold more EC cells activated by glucose infusion in the obese (EC cells co-expressing 5-HT and pERK, P = 0.001), while the 5-HT content of EC cells in duodenum and colon was similar; TPH1 expression was 1.4-fold higher in the duodenum of obese subjects (P = 0.044), and related positively to BMI (R2 = 0.310, P = 0.031). CONCLUSIONS: Human obesity is characterized by an increased capacity to produce and release 5-HT from the proximal small intestine, which is strongly linked to higher body mass, and glycemic control. Gut-derived 5-HT is likely to be an important driver of pathogenesis in human obesity and dysglycemia.


Subject(s)
Colon/cytology , Enterochromaffin Cells/metabolism , Obesity/physiopathology , Peripheral Nervous System/physiology , Serotonin/metabolism , Adult , Blood Glucose/metabolism , Cells, Cultured , Colon/metabolism , Endoscopy, Gastrointestinal , Female , Humans , Male , Middle Aged , Obesity/metabolism , Peripheral Nervous System/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction
15.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28320893

ABSTRACT

Enterochromaffin (EC) cells located in the gastrointestinal (GI) tract provide the vast majority of serotonin (5-HT) in the body and constitute half of all enteroendocrine cells. EC cells respond to an array of stimuli, including various ingested nutrients. Ensuing 5-HT release from these cells plays a diverse role in regulating gut motility as well as other important responses to nutrient ingestion such as glucose absorption and fluid balance. Recent data also highlight the role of peripheral 5-HT in various pathways related to metabolic control. Details related to the manner by which EC cells respond to ingested nutrients are scarce and as that the nutrient environment changes along the length of the gut, it is unknown whether the response of EC cells to nutrients is dependent on their GI location. The aim of the present study was to identify whether regional differences in nutrient sensing capability exist in mouse EC cells. We isolated mouse EC cells from duodenum and colon to demonstrate differential responses to sugars depending on location. Measurements of intracellular calcium concentration and 5-HT secretion demonstrated that colonic EC cells are more sensitive to glucose, while duodenal EC cells are more sensitive to fructose and sucrose. Short-chain fatty acids (SCFAs), which are predominantly synthesized by intestinal bacteria, have been previously associated with an increase in circulating 5-HT; however, we find that SCFAs do not acutely stimulate EC cell 5-HT release. Thus, we highlight that EC cell physiology is dictated by regional location within the GI tract, and identify differences in the regional responsiveness of EC cells to dietary sugars.


Subject(s)
Colon/metabolism , Duodenum/metabolism , Enterochromaffin Cells/metabolism , Serotonin/metabolism , Animals , Calcium/metabolism , Colon/drug effects , Duodenum/drug effects , Enterochromaffin Cells/drug effects , Fatty Acids, Volatile/pharmacology , Fructose/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Sucrose/pharmacology
16.
BMC Evol Biol ; 16(1): 214, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27737633

ABSTRACT

BACKGROUND: Huntingtin-associated Protein 1 (HAP1) is expressed in neurons and endocrine cells, and is critical for postnatal survival in mice. HAP1 shares a conserved "HAP1_N" domain with TRAfficking Kinesin proteins TRAK1 and TRAK2 (vertebrate), Milton (Drosophila) and T27A3.1 (C. elegans). HAP1, TRAK1 and TRAK2 have a degree of common function, particularly regarding intracellular receptor trafficking. However, TRAK1, TRAK2 and Milton (which have a "Milt/TRAK" domain that is absent in human and rodent HAP1) differ in function to HAP1 in that they are mitochondrial transport proteins, while HAP1 has emerging roles in starvation response. We have investigated HAP1 function by examining its evolution, and upstream gene promoter sequences. We performed phylogenetic analyses of the HAP1_N domain family of proteins, incorporating HAP1 orthologues (identified by genomic synteny) from 5 vertebrate classes, and also searched the Dictyostelium proteome for a common ancestor. Computational analyses of mammalian HAP1 gene promoters were performed to identify phylogenetically conserved regulatory motifs. RESULTS: We found that as recently as marsupials, HAP1 contained a Milt/TRAK domain and was more similar to TRAK1 and TRAK2 than to eutherian HAP1. The Milt/TRAK domain likely arose post multicellularity, as it was absent in the Dictyostelium proteome. It was lost from HAP1 in the eutherian lineage, and also from T27A3.1 in C. elegans. The HAP1 promoter from human, mouse, rat, rabbit, horse, dog, Tasmanian devil and opossum contained common sites for transcription factors involved in cell cycle, growth, differentiation, and stress response. A conserved arrangement of regulatory elements was identified, including sites for caudal-related homeobox transcription factors (CDX1 and CDX2), and myc-associated factor X (MAX) in the region of the TATA box. CDX1 and CDX2 are intestine-enriched factors, prompting investigation of HAP1 protein expression in the human duodenum. HAP1 was localized to singly dispersed mucosal cells, including a subset of serotonin-positive enterochromaffin cells. CONCLUSION: We have identified eutherian HAP1 as an evolutionarily recent adaptation of a vertebrate TRAK protein-like ancestor, and found conserved CDX1/CDX2 and MAX transcription factor binding sites near the TATA box in mammalian HAP1 gene promoters. We also demonstrated that HAP1 is expressed in endocrine cells of the human gut.


Subject(s)
Conserved Sequence/genetics , Intestinal Mucosa/metabolism , Mammals/genetics , Nerve Tissue Proteins/metabolism , Promoter Regions, Genetic , Animals , Base Sequence , Binding Sites , Caenorhabditis elegans/genetics , Humans , Mitochondria/genetics , Multigene Family , Nucleotide Motifs/genetics , Phylogeny , Protein Binding/genetics , Protein Domains , Protein Transport , Reproducibility of Results , Sequence Homology, Nucleic Acid , Serotonin/metabolism , Transcription Factors/genetics
17.
J Neurochem ; 138(5): 710-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27315547

ABSTRACT

Huntingtin-associated protein-1 (HAP1) is involved in intracellular trafficking, vesicle transport, and membrane receptor endocytosis. However, despite such diverse functions, the role of HAP1 in the synaptic vesicle (SV) cycle in nerve terminals remains unclear. Here, we report that HAP1 functions in SV exocytosis, controls total SV turnover and the speed of vesicle fusion in nerve terminals and regulates glutamate release in cortical brain slices. We found that HAP1 interacts with synapsin I, an abundant neuronal phosphoprotein that associates with SVs during neurotransmitter release and regulates synaptic plasticity and neuronal development. The interaction between HAP1 with synapsin I was confirmed by reciprocal co-immunoprecipitation of the endogenous proteins. Furthermore, HAP1 co-localizes with synapsin I in cortical neurons as discrete puncta. Interestingly, we find that synapsin I localization is specifically altered in Hap1(-/-) cortical neurons without an effect on the localization of other SV proteins. This effect on synapsin I localization was not because of changes in the levels of synapsin I or its phosphorylation status in Hap1(-/-) brains. Furthermore, fluorescence recovery after photobleaching in transfected neurons expressing enhanced green fluorescent protein-synapsin Ia demonstrates that loss of HAP1 protein inhibits synapsin I transport. Thus, we demonstrate that HAP1 regulates SV exocytosis and may do so through binding to synapsin I. The Proposed mechanism of synapsin I transport mediated by HAP1 in neurons. HAP1 interacts with synapsin I, regulating the trafficking of synapsin I containing vesicles and/or transport packets, possibly through its engagement of microtubule motors. The absence of HAP1 reduces synapsin I transport and neuronal exocytosis. These findings provide insights into the processes of neuronal trafficking and synaptic signaling.


Subject(s)
Exocytosis/physiology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synapsins/metabolism , Synaptic Vesicles/metabolism , Animals , Cell Movement/physiology , Endocytosis/physiology , Membrane Fusion/physiology , Mice , Nerve Tissue Proteins/genetics , Protein Transport , Synaptic Transmission/physiology
18.
J Cell Physiol ; 231(7): 1593-600, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26574734

ABSTRACT

Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles.


Subject(s)
Enterochromaffin Cells/metabolism , Secretory Vesicles/metabolism , Serotonin/biosynthesis , Adrenal Cortex/cytology , Adrenal Cortex/metabolism , Animals , Exocytosis/genetics , Guinea Pigs , Membrane Fusion/genetics , Mice , Serotonin/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
19.
Nutr Metab (Lond) ; 12: 55, 2015.
Article in English | MEDLINE | ID: mdl-26673561

ABSTRACT

BACKGROUND: Enteroendocrine cells collectively constitute our largest endocrine tissue, with serotonin (5-HT) secreting enterochromaffin (EC) cells being the largest component (~50 %). This gut-derived 5-HT has multiple paracrine and endocrine roles. EC cells are thought to act as nutrient sensors and luminal glucose is the major absorbed form of carbohydrate in the gut and activates secretion in an array of cell types. It is unknown whether EC cells release 5-HT in response to glucose in primary EC cells. Furthermore, fasting augments 5-HT synthesis and release into the circulation. However, which nutrients cause fasting-induced synthesis of EC cell 5-HT is unknown. Here we examine the effects of acute and chronic changes in glucose availability on 5-HT release from intact tissue and single EC cells. METHODS: We utilised established approaches in our laboratories measuring 5-HT release in intact mouse colon with amperometry. We then examined single EC cells function using our published protocol in guinea-pig colon. Single cell Ca(2+) imaging and amperometry were used with these cells. Real-time PCR was used along with amperometry, on primary EC cells cultured for 24 h in 5 or 25 mM glucose. RESULTS: We demonstrate that acute increases in glucose, at levels found in the gut lumen rather than in plasma, trigger 5-HT release from intact colon, and cause Ca(2+) entry and 5-HT release in primary EC cells. Single cell amperometry demonstrates that high glucose increases the amount of 5-HT released from individual vesicles as they undergo exocytosis. Finally, 24 h incubation of EC cells in low glucose causes an increase in the transcription of the 5-HT synthesising enzyme Tph1 as well as increasing in 5-HT secretion in EC cells. CONCLUSIONS: We demonstrate that primary EC cells respond to acute changes in glucose availability through increases in intracellular Ca(2+) the activation of 5-HT secretion, but respond to chronic changes in glucose levels through the transcriptional regulation of Tph1 to alter 5-HT synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...