Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36008136

ABSTRACT

Birds are exceptionally adept at controlling their body position. For example, they can coordinate rapid movements of their body while stabilizing their head. Intriguingly, this ability may rely in part on a mechanosensory organ in the avian lower spinal cord called the lumbosacral organ (LSO). However, molecular mechanotransduction mechanisms have not been identified in the avian spinal cord. Here, we report the presence of glycinergic neurons in the LSO that exhibit immunoreactivity for myosin7a and espin, molecules essential for function and maintenance of hair cells in the inner ear. Specifically, we find glycinergic cell bodies near the central canal and processes that extend laterally to the accessory lobes and spinal ligaments. These LSO neurons are reminiscent of glycinergic neurons in a recently-described lateral spinal proprioceptive organ in zebrafish that detects spinal bending. The avian LSO, however, is located inside a series of fused vertebrae called the synsacrum, which constrains spinal bending. We suggest the LSO may be a modification and elaboration of a preexisting mechanosensory spinal network in vertebrates. A mechanistic understanding of its function may be an important clue to understanding the evolution and development of avian locomotion.


Subject(s)
Mechanotransduction, Cellular , Zebrafish , Animals , Birds , Neurons/physiology , Spinal Cord/physiology
2.
Neuropharmacology ; 180: 108271, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32814088

ABSTRACT

For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.


Subject(s)
Cholinesterase Inhibitors/adverse effects , Insecticides/adverse effects , Neurodevelopmental Disorders/chemically induced , Organophosphorus Compounds/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Animals , Female , Humans , Neurodevelopmental Disorders/diagnosis , Neurotoxicity Syndromes/diagnosis , Neurotoxicity Syndromes/etiology , Pregnancy , Prenatal Exposure Delayed Effects/diagnosis
3.
Neurotoxicol Teratol ; 81: 106914, 2020.
Article in English | MEDLINE | ID: mdl-32652103

ABSTRACT

High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.


Subject(s)
Brain/drug effects , Insecticides/pharmacology , Learning/drug effects , Memory/drug effects , Acetylcholinesterase/metabolism , Acetylcholinesterase/pharmacology , Animals , Cholinesterase Inhibitors/pharmacology , Female , Guinea Pigs , Malathion/pharmacology , Male , Neurotoxicity Syndromes/etiology , Pregnancy , Prenatal Exposure Delayed Effects , Spatial Learning/drug effects
4.
Proc Natl Acad Sci U S A ; 116(11): 5160-5169, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30796190

ABSTRACT

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) is a putative fast-acting antidepressant candidate. Although inhibition of NMDA-type glutamate receptors (NMDARs) is one mechanism proposed to underlie ketamine's antidepressant and adverse effects, the potency of (2R,6R)-HNK to inhibit NMDARs has not been established. We used a multidisciplinary approach to determine the effects of (2R,6R)-HNK on NMDAR function. Antidepressant-relevant behavioral responses and (2R,6R)-HNK levels in the extracellular compartment of the hippocampus were measured following systemic (2R,6R)-HNK administration in mice. The effects of ketamine, (2R,6R)-HNK, and, in some cases, the (2S,6S)-HNK stereoisomer were evaluated on the following: (i) NMDA-induced lethality in mice, (ii) NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 field of mouse hippocampal slices, (iii) NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and NMDA-evoked currents in CA1 pyramidal neurons of rat hippocampal slices, and (iv) recombinant NMDARs expressed in Xenopus oocytes. While a single i.p. injection of 10 mg/kg (2R,6R)-HNK exerted antidepressant-related behavioral and cellular responses in mice, the ED50 of (2R,6R)-HNK to prevent NMDA-induced lethality was found to be 228 mg/kg, compared with 6.4 mg/kg for ketamine. The 10 mg/kg (2R,6R)-HNK dose generated maximal hippocampal extracellular concentrations of ∼8 µM, which were well below concentrations required to inhibit synaptic and extrasynaptic NMDARs in vitro. (2S,6S)-HNK was more potent than (2R,6R)-HNK, but less potent than ketamine at inhibiting NMDARs. These data demonstrate the stereoselectivity of NMDAR inhibition by (2R,6R;2S,6S)-HNK and support the conclusion that direct NMDAR inhibition does not contribute to antidepressant-relevant effects of (2R,6R)-HNK.


Subject(s)
Antidepressive Agents/pharmacology , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Behavior, Animal/drug effects , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Inhibitory Concentration 50 , Ketamine/administration & dosage , Ketamine/chemistry , Male , Mice , N-Methylaspartate/metabolism , Protein Subunits/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Rats , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...