Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 53(31): 7442-53, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25402910

ABSTRACT

This paper presents a novel marker encoded fringe projection profilometry (FPP) scheme for efficient 3-dimensional (3D) model acquisition. Traditional FPP schemes can introduce large errors to the reconstructed 3D model when the target object has an abruptly changing height profile. For the proposed scheme, markers are encoded in the projected fringe pattern to resolve the ambiguities in the fringe images due to that problem. Using the analytic complex wavelet transform, the marker cue information can be extracted from the fringe image, and is used to restore the order of the fringes. A series of simulations and experiments have been carried out to verify the proposed scheme. They show that the proposed method can greatly improve the accuracy over the traditional FPP schemes when reconstructing the 3D model of objects with abruptly changing height profile. Since the scheme works directly in our recently proposed complex wavelet FPP framework, it enjoys the same properties that it can be used in real time applications for color objects.

2.
IEEE Trans Med Imaging ; 17(3): 334-43, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9735897

ABSTRACT

With the recent development in scatter and attenuation correction algorithms, dynamic single photon emission computerized tomography (SPECT) can potentially yield physiological parameters, with tracers exhibiting suitable kinetics such as thallium-201 (Tl-201). A systematic way is proposed to investigate the minimum data acquisition times and sampling requirements for estimating physiological parameters with quantitative dynamic SPECT. Two different sampling schemes were investigated with Monte Carlo simulations: 1) Continuous data collection for total study duration ranging from 30-240 min. 2) Continuous data collection for first 10-45 min followed by a delayed study at approximately 3 h. Tissue time activity curves with realistic noise were generated from a mean plasma time activity curve and rate constants (K1 - k4) derived from Tl-201 kinetic studies in 16 dogs. Full dynamic sampling schedules (DynSS) were compared to optimum sampling schedules (OSS). We found that OSS can reliably estimate the blood flow related K1 and Vd comparable to DynSS. A 30-min continuous collection was sufficient if only K1 was of interest. A split session schedule of a 30-min dynamic followed by a static study at 3 h allowed reliable estimation of both K1 and Vd avoiding the need for a prolonged (>60-min) continuous dynamic acquisition. The methodology developed should also be applicable to optimizing sampling schedules for other SPECT tracers.


Subject(s)
Thallium Radioisotopes , Tomography, Emission-Computed, Single-Photon/methods , Animals , Dogs , Monte Carlo Method , Thallium Radioisotopes/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...