Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Behav Processes ; 212: 104945, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37775063

ABSTRACT

The growth of personality research has led to the integration of consistent variation of individual behaviour in multidimensional approaches including physiological variables, which are required to continue building a more comprehensive theory about coping strategies. In this study, we used wild-caught males of Ctenomys talarum (tuco-tucos), a solitary subterranean rodent, to assess the relationships among personality traits and several physiological variables, namely stress response, testosterone, immunity, and energy metabolism. Subjects (n = 21) were used in experimental tests assessing behaviour, energy metabolism, testosterone levels, inflammatory cell-mediated and humoral immunity, and stress response to a simulated predator attack. The structural equation model explained a moderate portion of the variance of personality behaviours related to activity (52%), boldness (35%), and socioaversion (30%). More active and bold individuals showed higher oxygen consumption. While those subjects had lower baseline cortisol levels, there was no relationship between cortisol levels of the stress-induced response. Cell-mediated immune response was related to activity levels. Finally, testosterone only affected boldness. Despite some of these relationships diverge in direction to predicted ones, overall they support the existence of coping styles in male C. talarum; and are discussed in the light of current hypotheses and particular behavioural and ecological traits of tuco-tucos.

2.
Viruses ; 15(1)2023 01 07.
Article in English | MEDLINE | ID: mdl-36680217

ABSTRACT

Grapevine is a widely grown fruit crop that is seriously affected by different viruses, reducing grape yield and quality, as well as threatening profitability. Vineyard disease management requires accurate identification of viral infections. This study aimed to survey the presence of ten grapevine viruses in four geographic sites in the Mendoza province of Argentina. Two hundred twenty-three composite cane samples from 1060 plants of six cultivars were collected from 26 blocks distributed across 11 vineyards. The cane samples were screened by RT-PCR for the following viruses: grapevine leafroll-associated viruses 1-4 (GLRaV 1, 2, 3, and 4), grapevine fanleaf virus (GFLV), grapevine fleck virus (GFkV), grapevine virus A (GVA) and B (GVB), grapevine rupestris stem pitting associated virus (GRSPaV), and arabis mosaic virus (ArMV). The results showed an uneven occurrence of viruses through the sampled regions, with GRSPaV being prevalent (71.1%), followed by GFLV (28.9%), GFkV (20.6%), and GLRaV-2 (14.7%). GVB was not detected. This study revealed a moderate prevalence of viruses associated with economically impactful diseases in the vineyards surveyed.


Subject(s)
Flexiviridae , Plant Diseases , Farms , Argentina , Flexiviridae/genetics
3.
J Exp Zool A Ecol Integr Physiol ; 339(3): 253-268, 2023 04.
Article in English | MEDLINE | ID: mdl-36479923

ABSTRACT

The acute phase response (APR), coordinated by a complex network of components of the immune and neuroendocrine systems, plays a key role in early immune defense. This response can be elicited by a wide variety of pathogens at different intensities (frequencies and doses), hence experimental immune challenges with antigen gradients makes it possible to evaluate sickness progression with a better representation of what occurs in natural systems. However, how infection intensity could shape the APR magnitude in wild species is still poorly understood. Here, the immune response was activated in the subterranean rodent Ctenomys talarum with a gradient of lipopolysaccharide (LPS) doses (0.5, 1, 1.5, and 2 mg/kg of body mass). Changes in body temperature, body mass, and energetic costs were evaluated over time. We also assessed cortisol levels, white blood cells counts and neutrophil: lymphocyte ratios, before and after injection. Results indicated that during the APR, C. talarum shows a hyperthermic response, which is maintained for 6 h, with slight differences among antigen doses in the pattern of thermal response and body mass change. A maximum increase in body temperature of 0.83°C to 1.63°C was observed during the first hour, associated with a metabolic cost that ranged from 1.25 to 1.41 ml O2 /gh. Although no clear effects of treatment were detected on leukocyte abundance, we found increments in neutrophil: lymphocyte ratios and gradual increases in cortisol levels corresponding to the intensity of simulated infection, which may indicate redistribution of immune cells and enhancement of immune function. An evident sickness syndrome was observed even at the lowest LPS dose that was characterized by an increase in body temperature, energy expenditure, and N: L ratio, as well as a dose-dependent increase in cortisol levels. Although in nature, other constraints and challenges could affect the magnitude and costs of immune responses, C. talarum mounts an effective APR with a low increase in their daily energy expenditure, regardless of LPS dose.


Subject(s)
Acute-Phase Reaction , Rodent Diseases , Animals , Hydrocortisone , Rodentia/metabolism , Lipopolysaccharides/toxicity , Immunity
4.
J Insect Physiol ; 128: 104178, 2021 01.
Article in English | MEDLINE | ID: mdl-33285145

ABSTRACT

In temperate climates, low ambient temperatures in late winter and in spring can result in cold stress conditions in brood areas of weakened honey bee colonies, leading to increased levels of developmental interruptions and death of the brood. Very little is known about the physiological and molecular mechanisms that regulate honey bee brood responses to acute cold-stress. Here, we hypothesized that central regulatory pathways mediated by insulin/insulin-like peptide signalling (IIS) and adipokinetic hormone (AKH) are linked to metabolic changes in cold-stressed honey bee brood. A. mellifera brood reared at suboptimal temperatures showed diminished growth rate and arrested development progress. Notably, cold-stressed brood rapidly recovers the growth in the first 24 h after returning at control rearing temperature, sustained by the induction of compensatory mechanisms. We determined fast changes in the expression of components of IIS and AKH pathways in cold-stressed brood supporting their participation in metabolic events, growth and stress responses. We also showed that metabolic rate keeps high in brood exposed to stress suggesting a role in energy supply for growth and cell repair. Additionally, transcript levels of the uncoupling protein MUP2 were elevated in cold-stressed brood, which could indicate that this protein acts in the heat generation through mitochondrial decoupling mechanisms and/or in the ROS attenuation. Physiological, metabolic and molecular mechanisms that shape the responses to cold-stress in honey bee brood are addressed and discussed.


Subject(s)
Bees , Cold-Shock Response/physiology , Animals , Basal Metabolism/physiology , Bees/growth & development , Bees/physiology , Body Temperature Regulation/physiology , Cold Temperature , Gene Expression Regulation , Genes, Insect , Insect Hormones/genetics , Insect Hormones/metabolism , Insulin/genetics , Insulin/metabolism , Larva/growth & development , Larva/physiology , Oligopeptides/genetics , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Seasons , Signal Transduction/physiology
5.
J Therm Biol ; 89: 102564, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32364971

ABSTRACT

In terrestrial endotherms, evaporation is a significant mechanism of water loss in hot environments. Although water is passively lost by evaporation, individuals can regulate it at different levels. Inhabiting a relatively stable environment characterized by mild ambient temperature (Ta) and high humidity can ensure a balanced water budget. Many fossorial rodents are well adapted to live in such conditions. In this study, evaporative water loss (EWL) of fossorial rodent species with different degree of adaptations to underground life (from strictly subterranean to those with regular surface activity) was evaluated. By measuring EWL, the specific contribution of either evaporative or non-evaporative components of heat loss can be determined. With the exception of the silvery mole-rat (Heliophobius argenteocinereus), in all tested rodents EWL is relatively stable below and within the thermoneutral zone (TNZ). As Tas increase above TNZ, EWL increases as does total thermal conductance, but conductance increases several times more than EWL. In addition, non-evaporative routes seem to be more important than evaporative heat loss in the analyzed species. No clear pattern of EWL in relation to a species degree of fossoriality or sociality was detected. In this context, atmosphere of burrows could affect EWL, since the high humidity found inside tunnels can establish limits on evaporation to favor water rather than thermal balance.


Subject(s)
Behavior, Animal , Body Temperature Regulation , Rodentia/physiology , Social Behavior , Water Loss, Insensible , Animals , Body Water/physiology
6.
J Therm Biol ; 80: 164-171, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30784482

ABSTRACT

One way to understand ecological patterns of species is to determine their physiological diversity on a large geographic and/or temporal scales, in a context of hierarchical biodiversity framework. In particular, macrophysiological studies analyze how environmental factors affect the physiology and therefore the distribution of species. Subterranean species are an excellent model for evaluating the large-scale effects of ambient temperature (Ta) conditions on thermal physiology and distribution, due to their extensive use of burrows that provide a relatively thermal stable environment. Species belonging to the genus Ctenomys are all subterranean and endemic of South America. Cold induced maximum metabolic rate (MMR), basal metabolic rate (BMR) and non shivering thermogenesis (NST) were analyzed, as well as the expression of uncoupled proteins (UCP) in brown adipose tissue (BAT). Biogeographical variables appear to have no effect MMR experimentally induced by cold condition within Ctenomys. Also, mechanisms of heat production are species-specific, varying from a combination of ST and NST to a complete use of shivering mechanisms. This pattern is correlated at tissue level, since species that use only ST show a smaller interscapular BAT patch, not detectable presence of UCP1 and low COX activity. Thus, other factors, including body mass, that constrain cold induced MMR could affect thermogenic variability among Ctenomys. In the evolutionary timescale, if low O2 levels of burrows impose a ceiling in cold induced MMR, and ST is enhanced due to species-specific life history traits, such as digging effort, then the observed differences among Ctenomys species might be explained.


Subject(s)
Rodentia/physiology , Thermogenesis , Animals , Energy Metabolism , Species Specificity , Temperature
7.
Aging Cell ; 16(5): 988-993, 2017 10.
Article in English | MEDLINE | ID: mdl-28707419

ABSTRACT

Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase-based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re-activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals.


Subject(s)
Longevity/genetics , Mutation , Protein Biosynthesis , Rodentia/genetics , Animals , Body Weight , Genes, Reporter , Genetic Code , Luciferases/genetics , Luciferases/metabolism , Phylogeny , Rodentia/anatomy & histology , Rodentia/classification , Species Specificity
8.
Article in English | MEDLINE | ID: mdl-28179141

ABSTRACT

Understanding how evolutionary variation in energetic metabolism arises is central to several theories in animal biology. Basal metabolic rate (BMR) -i.e., the minimum rate of energy necessary to maintain thermal homeostasis in endotherms- is a highly informative measure to increase our understanding, because it is determined under highly standardized conditions. In this study we evaluate the relationship between taxa- and mass-independent (residual) BMR and ten environmental factors for 34 subterranean rodent species. Both conventional and phylogenetically informed analyses indicate that ambient temperature is the major determinant of residual BMR, with both variables inversely correlated. By contrast, other environmental factors that have been shown to affect residual BMR in endotherms, such as habitat productivity and rainfall, were not significant predictors of residual BMR in this group of species. Then, the results for subterranean rodents appear to support a central prediction of the obligatory heat model (OHM), which is a mechanistic model aimed to explain the evolution of residual BMR. Specifically, OHM proposes that during the colonization of colder environments, individuals with greater masses of metabolically expensive tissues (and thus with greater BMR) are favored by natural selection due to the link between greater masses of metabolically expensive tissues and physiological capacities. This way, natural selection should establishes a negative correlation between ambient temperature and both internal organ size and residual BMR.


Subject(s)
Biological Evolution , Energy Metabolism , Models, Biological , Rodentia/physiology , Acclimatization , Altitude , Animal Distribution , Animals , Basal Metabolism , Behavior, Animal , Body Temperature Regulation , Body Weight , Climate , Female , Male , Organ Size , Phylogeny , Rodentia/growth & development , Seasons , Species Specificity , Viscera/growth & development
9.
J Therm Biol ; 53: 113-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26590463

ABSTRACT

Subterranean rodents face unique thermoregulatory challenges. Evaporative water loss (EWL) is a crucial mechanism for maintaining heat balance in endotherms subjected to heat stress but also leads to potential dehydration. EWL depends on gradients of temperature and humidity between the surface of the individual and the surrounding environment. Underground burrows generally provide a stable water vapor saturated atmosphere which may impede evaporative heat loss (EHL). This will mainly occur when ambient temperature exceeds the upper limit of individual's thermoneutral zone, or when body temperature rises as result of digging activities. Here we evaluate the effect of ambient temperature on EWL and energy metabolism in the subterranean rodent Ctenomys talarum (tuco-tucos), which inhabits sealed burrows, but makes an extensive use of the aboveground environment. We observed that EWL is increased when ambient temperature rises above thermoneutrality; below this point, evaporation remains stable. Though EWL contributes to total heat loss by increasing ∼1.3 times at 35°C, dry thermal conductance is raised four times. In tuco-tucos' burrows both non-evaporative and, to some extent, evaporative and behavioral mechanisms are essential for body temperature regulation, preventing overheating at high ambient temperatures in a water vapor-saturated atmosphere.


Subject(s)
Arthrodermataceae/physiology , Body Temperature , Hot Temperature , Water Loss, Insensible , Ecosystem
10.
Article in English | MEDLINE | ID: mdl-24905647

ABSTRACT

Immune activity has been proposed to be associated with substantial costs, due to trade-offs with other functions or activities that share common resources and contribute to an animal's fitness. However, direct estimates of the cost of mounting an immune response are few and have been performed mainly in birds. Thus, further work is needed to clarify the relative costs of different components of the immune system and the role of environmental and life-history traits in modulating the costs of resistance. Within the components of immunity, inflammation is considered to be associated with a larger energetic expenditure. Here, we evaluated the energetic cost of the inflammatory response to phytohemagglutinin (PHA) in a wild population of a subterranean rodent, Ctenomys talarum, and the trade-offs between immune activity and reproduction. C. talarum develops an inflammatory response to PHA, but contrary to our predictions, this response was not associated with an increase in oxygen consumption regardless of reproductive status or sex. Our study shows that an immune challenge may not always result in a detectable energetic cost. We discuss the possibility that other currencies could be underlying the cost, such as micro-or macronutrients requirements, autoimmunity or oxidative stress.


Subject(s)
Energy Metabolism/immunology , Immunity, Innate/drug effects , Inflammation/metabolism , Phytohemagglutinins/administration & dosage , Animals , Energy Metabolism/drug effects , Inflammation/immunology , Inflammation/pathology , Rodentia/metabolism , Rodentia/physiology
11.
Article in English | MEDLINE | ID: mdl-24726606

ABSTRACT

A traditional approach used to assess whether immune defense is costly is to explore the existence of trade-offs between immunity and other functions; however, quantitative studies of the energetic costs associated with the activation of the immune system are scarce. We assessed the magnitude of a PHA-triggered immune response and the associated energetic costs in 60-day old Ctenomys talarum. We expected that the magnitude of the macroscopic inflammatory response to PHA is lower in young tuco-tucos compared with that of adults, given the allocation of substantial energy to growth, and that the magnitude of the inflammation is lower in male pups compared to females, due to the higher investment in growth of the larger sex. Concomitantly, we expected that the pups challenged with PHA show an increase in oxygen consumption compared to control animals and that a positive association exists between magnitude of the PHA-induced inflammation and oxygen consumption. Contrary to what was expected, young tuco-tucos mounted a higher inflammatory response compared with adults and there were no differences in the magnitude of this response between sexes. The inflammatory response induced by a PHA injection did not represent a significant energetic cost for young tuco-tucos. There were no differences in oxygen consumption between PHA-injected and control animals, and tuco-tucos that mounted a higher inflammatory response to PHA did not show higher oxygen consumption. Energy expenditure, however, is not the only physiological cost involved in trade-offs between immune response and various functions of the organism, and other currencies are discussed.


Subject(s)
Aging , Animals, Wild/physiology , Energy Metabolism , Immunity, Innate , Infections/veterinary , Models, Biological , Rodentia/physiology , Animals , Argentina , Female , Foot , Immunologic Factors/toxicity , Infections/immunology , Infections/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Inflammation/veterinary , Male , Oxygen Consumption , Phytohemagglutinins/toxicity , Reproducibility of Results , Sex Characteristics
12.
Article in English | MEDLINE | ID: mdl-24667557

ABSTRACT

In altricial mammals, the role of the mother and siblings throughout pup's early ontogeny is critical to determine "normal" development in neonates. It has been reported that variations in parental investment during pups' development affect thermoregulatory capacity, growth patterns, brain development and behavior during lifetime, such as spatial learning and memory in adults. Ctenomys talarum (tuco-tuco) is a solitary subterranean rodent, who inhabits complex burrows and exhibits developed spatial orientation abilities. Tuco-tuco's pups display an altricial development, spending more than 80% of the time in contact with the mother. Throughout weaning period, pups display active exploratory behavior and improvements in their spatial capabilities. Then, we determined the effect of repeated brief postnatal isolations on the acquisition of physiological thermoregulation and the development of spatial learning capabilities in tuco-tuco's pups. As it occurs in wild animals, daily brief isolations (30min) did not affect the acquisition of adult's body temperature nor resting metabolic rate's development pattern. Moreover, behavioral response and adult spatial abilities of isolated pups were similar to that observed in non-isolated ones. Then, during periods of mother's absence, minor physiological and behavioral adjustments, such as shivering and postural changes, are required to keep C. talarum pups within allostasis.

13.
J Comp Physiol B ; 182(7): 971-83, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22614630

ABSTRACT

Subterranean rodents inhabit closed tunnel systems that are hypoxic and hypercapnic and buffer aboveground ambient temperature. In contrast to other strictly subterranean rodents, Ctenomys talarum exhibits activity on the surface during foraging and dispersion and hence, is exposed also to the aboveground environment. In this context, this species is a valuable model to explore how the interplay between underground and aboveground use affects the relationship among basal metabolic rate (BMR), cold-induced maximum metabolic rate (MMR), shivering (ST), and non-shivering thermogenesis (NST). In this work, we provide the first evidence of the presence of NST, including the expression of uncoupling proteins in brown adipose tissue (BAT), and shivering thermogenesis in Ctenomys talarum, a species belonging to the most numerous subterranean genus, endemic to South America. Our results show no differences in BMR, cold-induced MMR, and NST between cold- (15 °C) and warm- (25 °C) acclimated individuals. Furthermore, thermal acclimation had no effect on the expression of mitochondrial uncoupling protein 1 (UCP1) in BAT. Only cytochrome c oxidase (COX) content and activity increased during cold acclimation. When interscapular BAT was removed, NST decreased more than 30%, whereas cold-induced MMR remained unchanged. All together, these data suggest that cold-induced MMR reaches a maximum in warm-acclimated individuals and so a probable ceiling in NST and UCP1 expression in BAT. Possible thermogenic mechanisms explaining the increase in the oxidative capacity, mediated by COX in BAT of cold-acclimated individuals and the role of ST in subterranean life habits are proposed.


Subject(s)
Acclimatization/physiology , Ecosystem , Energy Metabolism/physiology , Rodentia/physiology , Thermogenesis/physiology , Adipose Tissue, Brown/metabolism , Analysis of Variance , Animals , Argentina , Basal Metabolism , Blotting, Western , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Spectrophotometry , Temperature , Uncoupling Protein 1
14.
J Comp Physiol B ; 181(3): 373-82, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21063713

ABSTRACT

Liolaemini lizards occur in southern South America in a variety of dietary habits across a broad latitudinal and altitudinal distribution. We studied standard metabolic rates of 19 Liolaemini species and analyzed these data using both conventional and phylogenetically informed statistics. Oxygen consumption showed a significant and positive relationship with body mass (SMR = 0.109 × body mass(0.876±0.023)), with a higher slope than that expected on the basis of the three-quarter power law model. After phylogenetically informed and conventional analyses, no significant differences in metabolic rates were found to be related to diet or elevation. We hypothesize that small body size, ecological conservatism and physiological compensation may explain the lack of differences in metabolic rates observed among these lizards.


Subject(s)
Ecology , Energy Metabolism/physiology , Lizards/metabolism , Altitude , Animals , Basal Metabolism , Body Size , Body Weight/physiology , Diet , Female , Male , Oxygen Consumption/physiology , South America
15.
Comp Biochem Physiol A Mol Integr Physiol ; 154(3): 298-307, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19497381

ABSTRACT

The present work is aimed to establish, in Ctenomys talarum, the physiological and behavioral adjustments undergone by individuals when they are allowed to dig burrows in soils with different hardness and fed with diets of different quality. For each soil-diet combination, we estimated: resting metabolic rate (RMR), body temperature (T(b)), body mass, digestibility, food consumption rate, transit time, reingestion rate, feces production and time devoted to feeding, resting, locomotor activity and coprophagy. Soil type and diet quality affected RMR, but response to soil hardness was verified later. Animals fed with high quality (HQ) diet showed similar body temperature irrespective of soil condition, while animals fed with low quality (LQ) diet showed lower T(b) under soft soil (SS). Individuals fed with LQ diet showed lower RMR and both, lower digestibility and high transit time of food than those fed with HQ diet. Moreover, increments in feeding and defecation rates were observed in the former group. Number of reingested feces did not differ between animals fed with diets of different quality. However, when incidence of reingestion was considered, animals fed with HQ diet showed higher values of feces ingestion. Either feeding, resting and activity patterns were arrhythmic. However, for animals fed with LQ diet a tendency to rhythmic coprophagy was observed and it could be considered as a way to optimize feeding. This study shows that RMR is limited by digestive efficiency which is influenced by diet quality, but also thermal stress may limit the conversion of assimilated energy into work and heat.


Subject(s)
Diet , Environment , Rodentia/metabolism , Soil , Animals , Basal Metabolism , Behavior, Animal , Body Temperature , Coprophagia , Digestion , Eating , Energy Metabolism , Female , Male
16.
Physiol Biochem Zool ; 82(3): 226-35, 2009.
Article in English | MEDLINE | ID: mdl-19327041

ABSTRACT

Subterranean mammals show lower mass-independent basal metabolic rates (BMRs). Several competing hypotheses were suggested to explain how microenvironmental conditions and underground life affect subterranean mammalian energetics. Two of these are the thermal stress and the cost-of-burrowing hypotheses. The thermal stress hypothesis posits that a lower mass-independent BMR reduces overheating in burrows where convective and evaporative heat loss is low, whereas the cost-of-burrowing hypothesis states that a lower mass-independent BMR may compensate for the high energy expenditure of digging. In this article, we assessed the relationship between BMR of Ctenomys and environmental variables through conventional statistics as well as independent contrasts. Moreover, we tested both the thermal stress and the cost-of-burrowing hypotheses at an interspecific level in a very homogeneous genus of subterranean rodents, the South American genus Ctenomys. We compared species from different geographic localities that have contrasting habitat conditions. We measured BMR through open-flow respirometry. After conventional as well as independent contrast analyses, our results support neither the thermal stress nor the cost-of-burrowing hypotheses. We observed that only body mass affects the variability in BMR. Contrasting climatic and soil conditions, habitat productivity, and net primary productivity were not correlated with BMR variability. We suggested that, because BMR and maximum metabolic rates (MMRs) are correlated, low BMRs among Ctenomys species could also be determined by factors that affect MMR rather than BMR.


Subject(s)
Behavior, Animal/physiology , Energy Metabolism/physiology , Rodentia/physiology , Animals , Body Weight , Ecosystem , Membrane Proteins , Saccharomyces cerevisiae Proteins
17.
Article in English | MEDLINE | ID: mdl-17407828

ABSTRACT

The low basal metabolic rate (BMR) observed in subterranean rodents, compared to that of surface-dwelling species of comparable size, has been proposed to be an adaptation to underground life. Two main hypotheses have been proposed to explain this finding, the cost of burrowing and the thermal stress. The former states that the low BMR is due to the high cost of extending the tunnel system whereas the other relates it to the possibility of overheating in burrows where evaporative and convective heat exchange are restricted. Additionally, both hypotheses related the energetics of subterranean rodent with spatial distribution. The genus Ctenomys is an excellent model to evaluate the cost of burrowing or thermal stress, since they are widely distributed, with members differing markedly in body mass. The aim of this study was to assess digging and basal energetics in two Ctenomys species that live in sympatry in a coastal grassland, but differ in their microspatial distribution by soil preference. We used the obtained energetic data to test both energy-distribution hypotheses. We measured BMR and digging metabolic rate (DMR) through open flow respirometry in two species exposed to soft and hard soils. In brief, DMR in Ctenomys talarum (100-170 g), as in Ctenomys australis (250-600 g), was unaffected by soil hardness. Within thermoneutral zone of each species, DMR/RMR quotient was lower in the smaller species. Our data did not support the thermal stress hypothesis, but the cost of burrowing hypothesis was not rejected. Other alternative hypotheses are proposed to explain the distribution of C. talarum and C. australis.


Subject(s)
Basal Metabolism , Geography , Rodentia/physiology , Animals , Body Weight , Soil , Temperature
18.
Article in English | MEDLINE | ID: mdl-16458556

ABSTRACT

For subterranean rodents, searching for food by extension of the tunnel system and maintenance of body temperature are two of the most important factors affecting their life underground. In this study we assess the effect of ambient temperature on energetics and thermoregulation during digging in Ctenomys talarum. We measured VO2 during digging and resting at ambient temperature (Ta) below, within, and above thermoneutrality. Digging metabolic rate was lowest at Ta within the thermoneutral zone and increased at both lower and higher temperatures, but body temperature (Tb) remained constant at all Tas. Below thermoneutrality, the cost of digging and thermoregulation are additive. Heat production for thermoregulation would be compensated by heat produced as a by-product of muscular activity during digging. Above thermoneutrality, conduction would be an important mechanism to maintain a constant Tb during digging.


Subject(s)
Behavior, Animal/physiology , Body Temperature Regulation/physiology , Energy Metabolism , Rodentia/physiology , Animals , Body Temperature , Female , Male , Oxygen Consumption , Rodentia/metabolism , Soil
19.
Naturwissenschaften ; 94(2): 100-6, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17021913

ABSTRACT

Burrows play an important role for many species, providing them with shelter and access to food resources. For subterranean rodents, living underground imposes constraints on morphology and physiology. The convergence in burrow architecture among subterranean rodents has been related to the energy demands imposed by the cost of constructing an entire system. The low frequency of tunnels with downward angles steeper than 40 degrees appears to be a common feature in burrow design. In the subterranean habitat, movements through the soil are expensive and gravity can exert important restrictions on digging energetics when individuals push out the soil removed in steeper digging angles. The aim of this study was to determine the effect of digging angle on digging energetics in Ctenomys talarum. The mass of the removed soil and burrowing speed were similar while digging metabolic rate and net cost of transport were higher in individuals digging in tunnels with angles >40 degrees than in those digging tunnels with angles <40 degrees . The cost of constructing a burrow in the horizontal plane differed by 20% from others in which the natural representation of tunnels >40 degrees was considered. Even given that tunnels >40 degrees represented only 6% of the total burrow length, burrow architecture appears to be constrained by the high energetic cost of constructing in steeper angles.


Subject(s)
Ecosystem , Housing, Animal , Rodentia/physiology , Animals , Body Weight , Female , Male , Oxygen Consumption , Soil
20.
Growth Dev Aging ; 66(2): 63-9, 2002.
Article in English | MEDLINE | ID: mdl-12537300

ABSTRACT

We evaluated in pups of Akodon azarae both the growth pattern from birth to 48 days of age and the effect of litter size on growth pattern and homeothermy acquisition from birth to weaning age. Individual pups gained weight as expected by a Gompertz growth pattern. Until weaning, litter size affected both the slope of the relationship between body temperature and age and the rate of growth of pups. Pups from small litters increased both body temperature and weight until body temperature and body weight of adults at higher rates than those from large litters.


Subject(s)
Body Temperature Regulation/physiology , Muridae/growth & development , Muridae/physiology , Animals , Body Temperature , Body Weight , Female , Litter Size , Male , Models, Biological , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...