Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 124: 296-302, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26562177

ABSTRACT

Over the last several decades, there has been an increase in public awareness and regulatory activity in regard to the presence of emerging contaminants in the environment that may have the potential to interact with the endocrine system of exposed wildlife. Alterations in vitellogenin (VTG), a high density yolk precursor protein, can indicate endocrine activity in oviparous species, including many fish and amphibians. While various methodologies and experiments have been performed to characterize baseline VTG concentrations among commonly studied fish species, fewer methodologies for accurately quantifying amphibian VTG are available. Since there is relatively little information available on background VTG levels in male and female frogs, the present investigation set out to quantify baseline levels of VTG in juvenile as well as adult male and female African clawed frogs (Xenopus laevis) using a newly developed liquid chromatography tandem mass spectrometry method. This new methodology for quantifying VTG in X. laevis frog blood plasma can be applied in mechanistic and toxicity studies with X. laevis to better characterize potential endocrine modes of action.


Subject(s)
Vitellogenins/blood , Xenopus laevis/blood , Animals , Chromatography, Liquid , Endocrine System/metabolism , Female , Male , Ranidae , Tandem Mass Spectrometry
2.
BMC Genomics ; 16: 869, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26503507

ABSTRACT

BACKGROUND: Idiopathic interstitial pneumonias (IIPs) are a group of heterogeneous, somewhat unpredictable diseases characterized by progressive scarring of the interstitium. Since lung function is a key determinant of survival, we reasoned that the transcriptional profile in IIP lung tissue would be associated with measures of lung function, and could enhance prognostic approaches to IIPs. RESULTS: Using gene expression profiling of 167 lung tissue specimens with IIP diagnosis and 50 control lungs, we identified genes whose expression is associated with changes in lung function (% predicted FVC and % predicted DLCO) modeled as categorical (severe vs mild disease) or continuous variables while adjusting for smoking status and IIP subtype; false discovery rate (FDR) approach was used to correct for multiple comparisons. This analysis identified 58 transcripts that are associated with mild vs severe disease (categorical analysis), including those with established role in fibrosis (ADAMTS4, ADAMTS9, AGER, HIF-1α, SERPINA3, SERPINE2, and SELE) as well as novel IIP candidate genes such as rhotekin 2 (RTKN2) and peptidase inhibitor 15 (PI15). Protein-protein interactome analysis of 553 genes whose expression is significantly associated with lung function when modeled as continuous variables demonstrates that more severe presentation of IIPs is characterized by an increase in cell cycle progression and apoptosis, increased hypoxia, and dampened innate immune response. Our findings were validated in an independent cohort of 131 IIPs and 40 controls at the mRNA level and for one gene (RTKN2) at the protein level by immunohistochemistry in a subset of samples. CONCLUSIONS: We identified commonalities and differences in gene expression among different subtypes of IIPs. Disease progression, as characterized by lower measures of FVC and DLCO, results in marked changes in expression of novel and established genes and pathways involved in IIPs. These genes and pathways represent strong candidates for biomarker studies and potential therapeutic targets for IIP severity.


Subject(s)
Gene Expression Regulation , Idiopathic Interstitial Pneumonias/genetics , Idiopathic Interstitial Pneumonias/physiopathology , Lung/physiopathology , Proteins/genetics , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAMTS4 Protein , ADAMTS9 Protein , Adult , Aged , E-Selectin/genetics , E-Selectin/metabolism , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Procollagen N-Endopeptidase/genetics , Procollagen N-Endopeptidase/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Serpin E2/genetics , Serpin E2/metabolism , Serpins/genetics , Serpins/metabolism
3.
Toxicol Rep ; 1: 743-751, 2014.
Article in English | MEDLINE | ID: mdl-26877973

ABSTRACT

4,4'-Methylene diphenyl diisocyanate (herein 4,4'-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4'-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4'-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4'-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4'-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4'-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4'-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4'-MDI-Lys adducts. Results indicated no positive results were obtained above the quantification limit by the signature peptide approach. If the 414 site of lysine adduction accounted for 100% of the 4,4'-MDI adductions in the signature peptide adduct approach, the three highest quantifiable samples by the 4,4'-MDI-Lys method should have at least been detectable by the signature peptide method. Results show that although the 4,4'-MDI signature peptide approach is more selective, it is 18 times less sensitive than the 4,4'-MDI-Lys method, thus limiting the ability to detect adduct levels relative to the 4,4'-MDI-Lys amino acid method.

4.
PLoS One ; 7(6): e37708, 2012.
Article in English | MEDLINE | ID: mdl-22761659

ABSTRACT

RATIONALE: Peripheral blood biomarkers are needed to identify and determine the extent of idiopathic pulmonary fibrosis (IPF). Current physiologic and radiographic prognostic indicators diagnose IPF too late in the course of disease. We hypothesize that peripheral blood biomarkers will identify disease in its early stages, and facilitate monitoring for disease progression. METHODS: Gene expression profiles of peripheral blood RNA from 130 IPF patients were collected on Agilent microarrays. Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 1% was utilized to identify genes that were differentially-expressed in samples categorized based on percent predicted D(L)CO and FVC. MAIN MEASUREMENTS AND RESULTS: At 1% FDR, 1428 genes were differentially-expressed in mild IPF (D(L)CO >65%) compared to controls and 2790 transcripts were differentially- expressed in severe IPF (D(L)CO >35%) compared to controls. When categorized by percent predicted D(L)CO, SAM demonstrated 13 differentially-expressed transcripts between mild and severe IPF (< 5% FDR). These include CAMP, CEACAM6, CTSG, DEFA3 and A4, OLFM4, HLTF, PACSIN1, GABBR1, IGHM, and 3 unknown genes. Principal component analysis (PCA) was performed to determine outliers based on severity of disease, and demonstrated 1 mild case to be clinically misclassified as a severe case of IPF. No differentially-expressed transcripts were identified between mild and severe IPF when categorized by percent predicted FVC. CONCLUSIONS: These results demonstrate that the peripheral blood transcriptome has the potential to distinguish normal individuals from patients with IPF, as well as extent of disease when samples were classified by percent predicted D(L)CO, but not FVC.


Subject(s)
Biomarkers/blood , Gene Expression Profiling , Idiopathic Interstitial Pneumonias/diagnosis , Idiopathic Pulmonary Fibrosis/diagnosis , Aged , Carbon Monoxide/metabolism , Case-Control Studies , Disease Progression , Female , Humans , Idiopathic Interstitial Pneumonias/blood , Idiopathic Interstitial Pneumonias/genetics , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/genetics , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Vital Capacity
5.
Anal Chem ; 80(8): 2688-93, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18348541

ABSTRACT

A selective, rapid, and sensitive 12.7-min ultra performance liquid chromatography-isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) method was developed and compared to conventional high-performance liquid chromatography-isotope dilution tandem mass spectrometry (HPLC-ID/MS/MS) for the absolute quantitative determination of multiple proteins from complex matrixes. The UPLC analysis was carried out on an Acquity UPLC ethylene-bridged hybrid (BEH) C18 reversed-phase column (50 x 2.1 mm i.d., 1.7-microm particle size) with gradient elution at a flow rate of 300 microL/min. For the HPLC separation, a similar gradient profile on a reversed-phase C18 column with dimensions of 150 x 1.0 mm at a flow rate of 30 microL/min was utilized. The aqueous and organic mobile phases were 0.1% formic acid in water and acetonitrile, respectively. Detection was performed on a triple-quadrupole mass spectrometer operated in the multiple reaction monitoring mode. Linear calibration curves were obtained in the concentration range of 10-90 fmol/microL. Relative standard deviation values equal to or less than 6.5% were obtained by the UPLC-ID/MS/MS method, thus demonstrating performance equivalent to conventional HPLC-ID/MS/MS for isotope dilution quantification of peptides and proteins. UPLC provides additional dimensions of rapid analysis time and high-sample throughput, which expands laboratory emergency response capabilities over conventional HPLC.


Subject(s)
Chromatography, Liquid/methods , Influenza Vaccines/analysis , Peptides/analysis , Proteins/analysis , Tandem Mass Spectrometry/methods , Viral Proteins/analysis , Chromatography, High Pressure Liquid/methods , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/chemistry , Radioisotope Dilution Technique , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...