Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36832556

ABSTRACT

We study the mechanism of scarring of eigenstates in rectangular billiards with slightly corrugated surfaces and show that it is very different from that known in Sinai and Bunimovich billiards. We demonstrate that there are two sets of scar states. One set is related to the bouncing ball trajectories in the configuration space of the corresponding classical billiard. A second set of scar-like states emerges in the momentum space, which originated from the plane-wave states of the unperturbed flat billiard. In the case of billiards with one rough surface, the numerical data demonstrate the repulsion of eigenstates from this surface. When two horizontal rough surfaces are considered, the repulsion effect is either enhanced or canceled depending on whether the rough profiles are symmetric or antisymmetric. The effect of repulsion is quite strong and influences the structure of all eigenstates, indicating that the symmetric properties of the rough profiles are important for the problem of scattering of electromagnetic (or electron) waves through quasi-one-dimensional waveguides. Our approach is based on the reduction of the model of one particle in the billiard with corrugated surfaces to a model of two artificial particles in the billiard with flat surfaces, however, with an effective interaction between these particles. As a result, the analysis is conducted in terms of a two-particle basis, and the roughness of the billiard boundaries is absorbed by a quite complicated potential.

2.
Phys Rev Lett ; 108(17): 174101, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22680869

ABSTRACT

We investigate the nearest level spacing statistics of open chaotic wave systems. To this end we derive the spacing distributions for the three Wigner ensembles in the one-channel case. The theoretical results give a clear physical meaning of the modifications on the spacing distributions produced by the coupling to the environment. Based on the analytical expressions obtained, we then propose general expressions of the spacing distributions for any number of channels, valid from weak to strong coupling. The latter expressions contain one free parameter. The surmise is successfully compared with numerical simulations of non-Hermitian random matrices and with experimental data obtained with a lossy electromagnetic chaotic cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...