Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(21)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38364261

ABSTRACT

Off-stoichiometric Cu-Cr-O delafossite thin films with different thicknesses were grown by metal organic chemical vapor deposition on substrates with different coefficients of thermal expansion. Seebeck thermoelectric coefficient and resistivity measurements were performed on the range of 300-850 K. A qualitative change in the temperature-dependence of the resistivity is observed at the temperature corresponding to the deposition process, where the transition from tensile to compressive strain takes place. Arrhenius plots reveal different slopes in these two thermal ranges. The fact that the shift is more pronounced for the thinner films might indicate the induced strain plays a role in changing electrical behaviour. Furthermore, changes below 0.1% in electrical mobility were measured when the strain is induced by mechanical bending.

2.
ACS Omega ; 8(6): 5475-5485, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816692

ABSTRACT

Gallium-doped zinc oxide (GZO) films were fabricated using RF magnetron sputtering and atomic layer deposition (ALD). The latter ones demonstrate higher electrical conductivities (up to 2700 S cm-1) and enhanced charge mobilities (18 cm2 V-1 s-1). The morphological analysis reveals differences mostly due to the very different nature of the deposition processes. The film deposited via ALD shows an increased transmittance in the visible range and a very small one in the infrared range that leads to a figure of merit of 0.009 Ω-1 (10 times higher than for the films deposited via sputtering). A benchmarking is made with an RF sputtered indium-doped tin oxide (ITO) film used conventionally in the industry. Another comparison between ZnO, Al:ZnO (AZO), and Ga:ZnO (GZO) films fabricated by ALD is presented, and the evolution of physical properties with doping is evidenced. Finally, we processed GZO thin films on a glass substrate into patterned transparent patch antennas to demonstrate an application case of short-range communication by means of the Bluetooth Low Energy (BLE) protocol. The GZO transparent antennas' performances are compared to a reference ITO antenna on a glass substrate and a conventional copper antenna on FR4 PCB. The results highlight the possibility to use the transparent GZO antenna for reliable short-range communication and the achievability of an antenna entirely processed by ALD.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35335825

ABSTRACT

Combinatorial approach has been widely recognized as a powerful strategy to develop new-higher performance materials and shed the light on the stoichiometry-dependent properties of known systems. Herein, we take advantage of the unique features of chemical beam vapor deposition to fabricate compositionally graded Na1+xTaO3±Î´ thin films with −0.6 < x < 0.5. Such a varied composition was enabled by the ability of the employed technique to deliver and combine an extensive range of precursors flows over the same deposition area. The film growth occurred in a complex process, where precursor absolute flows, flow ratios, and substrate temperature played a role. The deviation of the measured Na/Ta ratios from those predicted by flow simulations suggests that a chemical-reaction limited regime underlies the growth mechanism and highlights the importance of the Ta precursor in assisting the decomposition of the Na one. The crystallinity was observed to be strongly dependent on its stoichiometry. High under-stoichiometries (e.g., Na0.5TaO3−δ) compared to NaTaO3 were detrimental for the formation of a perovskite framework, owing to the excessive amount of sodium vacancies and oxygen vacancies. Conversely, a well-crystallized orthorhombic perovskite structure peculiar of NaTaO3 was observed from mildly under-stoichiometric (e.g., Na0.9TaO3−δ) to highly over-stoichiometric (e.g., Na1.5TaO3+δ) compositions.

4.
ACS Appl Mater Interfaces ; 12(32): 36329-36338, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32666787

ABSTRACT

Conductive ultra-thin silver films are commonly fabricated by physical vapor deposition methods such as evaporation or sputtering. The line-of-sight geometry of these techniques impedes the conformal growth on substrates with complex morphology. In order to overcome this issue, volume deposition technologies such as chemical vapor deposition or atomic layer deposition are usually preferred. However, the silver films fabricated using these methods are generally non-electrically conductive for thicknesses below 20-50 nm due to island formation. Here, we demonstrate a novel approach for producing ultra-thin conductive silver layers on complex substrates. Relying on chemical vapor-phase deposition and plasma post-treatment, this two-step technique allows the synthesis of highly conductive and uniform silver films with a critical thickness lower than 15 nm and a sheet resistance of 1.6 Ω/□ for a 40 nm-thin film, corresponding to a resistivity of 6.4 µΩ·cm. The high infrared reflectance further demonstrates the optical quality of the films, despite a still large root-mean-square roughness of 8.9 nm. We successfully demonstrate the highly conformal deposition in lateral structures with an aspect ratio of up to 100. This two-step deposition method could be extended to other metals and open new opportunities for depositing electrically conductive films in complex 3D structures.

5.
Sci Rep ; 10(1): 1416, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996739

ABSTRACT

Off-stoichiometric copper chromium delafossites demonstrate the highest values of electric conductivity among the p-type transparent conducting oxides. Morphological and structural changes in Cu0.66Cr1.33O2 upon annealing processes are investigated. Chained copper vacancies were previously suggested as source of the high levels of doping in this material. High resolution Helium Ion Microscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy reveal a significant rearrangement of copper and chromium after the thermal treatments. Furthermore, Positron Annihilation Spectroscopy evidences the presence of vacancy defects within the delafossite layers which can be assigned to the Cu vacancy chains whose concentration decreases during the thermal process. These findings further confirm these chained vacancies as source of the p-type doping and suggest that the changes in electrical conductivities within the off-stoichiometric copper based delafossites are triggered by elemental rearrangements.

SELECTION OF CITATIONS
SEARCH DETAIL
...