Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 658: 156-166, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38100972

ABSTRACT

HYPOTHESIS: Plant protein ingredients from similar sources can vary in functionality not only because of compositional differences, but also because of differences in their structure depending on their processing history. It is essential to understand these distinctions to develop novel food emulsion using plant proteins. It is hypothesized that differing interfacial properties can be attributed to their structures, aggregation, and colloidal states. EXPERIMENTS: The adsorption behavior of a commercial protein isolate, homogenized or non-homogenized, was compared to a mildly extracted isolate to evaluate the effect of aggregation state and structural differences. After characterization of the particle size and protein composition, the interfacial properties were compared. FINDINGS: Atomic force microscopy provided evidence of interfaces packed with protein oligomers regardless of the treatment. Differences in adsorption kinetics and interfacial shear rheology depending on oil polarity suggested different interfacial structures. A polydisperse mixture of protein oligomers resulted in increased rearrangements and protein-protein interactions at the interface. Homogenization of commercial proteins resulted in a lower interfacial tension and less elastic interfaces compared to those of native proteins due to the presence of larger aggregates. This study highlights how the interfacial properties can be related to the protein aggregation state resulting from differences in processing history.


Subject(s)
Pisum sativum , Protein Aggregates , Emulsions/chemistry , Surface Tension , Plant Proteins , Adsorption , Water/chemistry , Rheology
2.
Biochim Biophys Acta Biomembr ; 1864(9): 183957, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35561790

ABSTRACT

The active hallucinogen of magic mushrooms, psilocin, is being repurposed to treat nicotine addiction and treatment-resistant depression. Psilocin belongs to the tryptamine class of psychedelic compounds which include the hormone serotonin. It is believed that psilocin exerts its effect by binding to the serotonin 5-HT2A receptor. However, recent in-vivo evidence suggests that psilocin may employ a different mechanism to exert its effects. Membrane-mediated receptor desensitization of neurotransmitter receptors is one such mechanism. We compare the impact of the neutral and charged versions of psilocin and serotonin on the properties of zwitterionic and anionic lipid membranes using molecular dynamics simulations and calorimetry. Both compounds partition to the lipid interface and induce membrane thinning. The tertiary amine in psilocin, as opposed to the primary amine in serotonin, limits psilocin's impact on the membrane although more psilocin partitions into the membrane than serotonin. Calorimetry corroborates that both compounds induce a classical melting point depression like anesthetics do. Our results also lend support to a membrane-mediated receptor-binding mechanism for both psilocin and serotonin and provide physical insights into subtle chemical changes that can alter the membrane-binding of psychedelic compounds.


Subject(s)
Hallucinogens , Hallucinogens/chemistry , Hallucinogens/pharmacology , Lipids , Protein Binding , Psilocybe , Serotonin
3.
J Biol Chem ; 297(2): 101012, 2021 08.
Article in English | MEDLINE | ID: mdl-34324830

ABSTRACT

Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.


Subject(s)
Annexins/antagonists & inhibitors , Cell Membrane/drug effects , Molecular Dynamics Simulation , Neoplasms/drug therapy , Phenothiazines/pharmacology , Annexins/metabolism , Antipsychotic Agents/pharmacology , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylserines/metabolism , Phospholipids/metabolism
4.
Cells ; 9(4)2020 04 21.
Article in English | MEDLINE | ID: mdl-32326222

ABSTRACT

The plasma membrane surrounds every single cell and essentially shapes cell life by separating the interior from the external environment. Thus, maintenance of cell membrane integrity is essential to prevent death caused by disruption of the plasma membrane. To counteract plasma membrane injuries, eukaryotic cells have developed efficient repair tools that depend on Ca2+- and phospholipid-binding annexin proteins. Upon membrane damage, annexin family members are activated by a Ca2+ influx, enabling them to quickly bind at the damaged membrane and facilitate wound healing. Our recent studies, based on interdisciplinary research synergy across molecular cell biology, experimental membrane physics, and computational simulations show that annexins have additional biophysical functions in the repair response besides enabling membrane fusion. Annexins possess different membrane-shaping properties, allowing for a tailored response that involves rapid bending, constriction, and fusion of membrane edges for resealing. Moreover, some annexins have high affinity for highly curved membranes that appear at free edges near rupture sites, a property that might accelerate their recruitment for rapid repair. Here, we discuss the mechanisms of annexin-mediated membrane shaping and curvature sensing in the light of our interdisciplinary approach to study plasma membrane repair.


Subject(s)
Annexins/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Animals , Humans , Membrane Lipids/chemistry , Molecular Dynamics Simulation , Nanotubes/chemistry
5.
J Biol Chem ; 286(22): 19641-51, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21471210

ABSTRACT

The proangiogenic members of VEGF family and related receptors play a central role in the modulation of pathological angiogenesis. Recent insights indicate that, due to the strict biochemical and functional relationship between VEGFs and related receptors, the development of a new generation of agents able to target contemporarily more than one member of VEGFs might amplify the antiangiogenic response representing an advantage in term of therapeutic outcome. To identify molecules that are able to prevent the interaction of VEGFs with related receptors, we have screened small molecule collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation of VEGF receptor 1 and 2 (VEGFR-1,VEGFR-2) and to inhibit endothelial cell migration and capillary-like tube formation induced by VEGF-A or placental growth factor 1 (PlGF-1) at low µm concentration. In vivo, amentoflavone is able to inhibit VEGF-A-induced chorioallantoic membrane neovascularization as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop powerful new antiangiogenic molecules.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Biflavonoids/pharmacology , Colonic Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Agents, Phytogenic/chemistry , Biflavonoids/chemistry , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HEK293 Cells , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Phosphorylation , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...