Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 55(1): 183-198, 2017 01.
Article in English | MEDLINE | ID: mdl-27807153

ABSTRACT

Extensively drug-resistant (XDR) tuberculosis (TB) cannot be easily or quickly diagnosed. We developed a rapid, automated assay for the detection of XDR-TB plus resistance to the drug isoniazid (INH) for point-of-care use. Using a simple filter-based cartridge with an integrated sample processing function, the assay identified a wide selection of wild-type and mutant sequences associated with XDR-TB directly from sputum. Four new large-Stokes-shift fluorophores were developed. When these four Stokes-shift fluorophores were combined with six conventional fluorophores, 10-color probe detection in a single PCR tube was enabled. A new three-phase, double-nested PCR approach allowed robust melting temperature analysis with enhanced limits of detection (LODs). Finally, newly designed sloppy molecular beacons identified many different mutations using a small number of probes. The assay correctly distinguished wild-type sequences from 32 commonly occurring mutant sequences tested in gyrA, gyrB, katG, and rrs genes and the promoters of inhA and eis genes responsible for resistance to INH, the fluoroquinolone (FQ) drugs, amikacin (AMK), and kanamycin (KAN). The LOD was 300 CFU of Mycobacterium tuberculosis in 1 ml sputum. The rate of detection of heteroresistance by the assay was equivalent to that by Sanger sequencing. In a blind study of 24 clinical sputum samples, resistance mutations were detected in all targets with 100% sensitivity, with the specificity being 93.7 to 100%. Compared to the results of phenotypic susceptibility testing, the sensitivity of the assay was 75% for FQs and 100% each for INH, AMK, and KAN and the specificity was 100% for INH and FQ and 94% for AMK and KAN. Our approach could enable testing for XDR-TB in point-of-care settings, potentially identifying highly drug-resistant TB more quickly and simply than currently available methods.


Subject(s)
Antitubercular Agents/pharmacology , Extensively Drug-Resistant Tuberculosis/diagnosis , Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/drug effects , Point-of-Care Systems , Alleles , Amikacin/pharmacology , Automation, Laboratory/methods , DNA, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/microbiology , Fluoroquinolones/pharmacology , Genes, Bacterial , Humans , Isoniazid/pharmacology , Kanamycin/pharmacology , Polymerase Chain Reaction/methods , Sensitivity and Specificity
2.
J Biomol Tech ; 14(3): 183-90, 2003 Sep.
Article in English | MEDLINE | ID: mdl-13678148

ABSTRACT

Immobilization of proteins and other biological macromolecules on solid supports is a method suitable for purification or screening applications in life science research. Prolinx, Inc. has developed a novel chemical affinity system that can be used for specific immobilization of proteins and other macromolecules via interaction of two small synthetic molecules, phenyldiboronic acid (PDBA) and salicylhydroxamic acid (SHA). This report describes immobilization applications of activated microporous membranes that have been functionalized with SHA derivatives. These SHA-membranes exhibit high capacity and specificity for binding of PDBA-labeled nucleic acids and proteins. Conjugation of active protein with PDBA is performed in solution independent of the immobilization step on SHA membranes. The resulting PDBA-protein conjugate is immobilized directly without purification and retains biological activity. PDBA conjugates may also be released from these SHA-affinity membranes in a controlled manner. Capture and release of PBA-modified oligonucleotides is also demonstrated. SHA-membranes can be used as surfaces for microarrays, and are therefore compatible with high-throughput analyses. These properties make them useful for development of numerous preparative or screening applications.


Subject(s)
Membranes, Artificial , Salicylamides , Protein Array Analysis
3.
Nucleic Acids Res ; 30(13): 2790-9, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12087162

ABSTRACT

In this paper, we demonstrate the use of synthetic polyamide probes to fluorescently label heterochromatic regions on human chromosomes for discrimination in cytogenetic preparations and by flow cytometry. Polyamides bind to the minor groove of DNA in a sequence-specific manner. Unlike conventional sequence-specific DNA or RNA probes, polyamides can recognize their target sequence without the need to subject chromosomes to harsh denaturing conditions. For this study, we designed and synthesized a polyamide to target the TTCCA-motif repeated in the heterochromatic regions of chromosome 9, Y and 1. We demonstrate that the fluorescently labeled polyamide binds to its target sequence in both conventional cytogenetic preparations of metaphase chromosomes and suspended chromosomes without denaturation. Chromosomes 9 and Y can be discriminated and purified by flow sorting on the basis of polyamide binding and Hoechst 33258 staining. We generate chromosome 9- and Y-specific 'paints' from the sorted fractions. We demonstrate the utility of this technology by characterizing the sequence of an olfactory receptor gene that is duplicated on multiple chromosomes. By separating chromosome 9 from chromosomes 10-12 on the basis of polyamide fluorescence, we determine and differentiate the haplotypes of the highly similar copies of this gene on chromosomes 9 and 11.


Subject(s)
Chromosomes, Human/genetics , Nylons/chemistry , Base Sequence , Bisbenzimidazole/chemistry , Chromosome Painting , Flow Cytometry/methods , Fluorescence , Heterochromatin/genetics , Humans , In Situ Hybridization, Fluorescence/methods , Microscopy/methods , Oligonucleotides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...