Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 26(2): 876-887, 2020 02.
Article in English | MEDLINE | ID: mdl-31686431

ABSTRACT

The role of plant phenology as a regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as a distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant phenologically sensitive phases in high latitude and high altitude regions.


Subject(s)
Ecosystem , Photosynthesis , Climate Change , Seasons , Temperature
2.
Nat Clim Chang ; 9: 852-857, 2019 Nov.
Article in English | MEDLINE | ID: mdl-35069807

ABSTRACT

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

3.
Sci Rep ; 7(1): 16035, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29167456

ABSTRACT

Future increases in temperature and cloud cover will alter plant growth and decomposition of the large carbon pools stored in Arctic soils. A better understanding of interactions between above- and belowground processes and communities of plants and microorganisms is essential for predicting Arctic ecosystem responses to climate change. We measured ecosystem CO2 fluxes during the growing season for seven years in a dwarf-shrub tundra in West Greenland manipulated with warming and shading and experiencing a natural larvae outbreak. Vegetation composition, soil fungal community composition, microbial activity, and nutrient availability were analyzed after six years of treatment. Warming and shading altered the plant community, reduced plant CO2 uptake, and changed fungal community composition. Ecosystem carbon accumulation decreased during the growing season by 61% in shaded plots and 51% in warmed plots. Also, plant recovery was reduced in both manipulations following the larvae outbreak during the fifth treatment year. The reduced plant recovery in manipulated plots following the larvae outbreak suggests that climate change may increase tundra ecosystem sensitivity to disturbances. Also, plant community changes mediated via reduced light and reduced water availability due to increased temperature can strongly lower the carbon sink strength of tundra ecosystems.


Subject(s)
Moths , Tundra , Animals , Carbon Dioxide/analysis , Carbon Sequestration , Soil/chemistry , Soil Microbiology
4.
Ambio ; 46(Suppl 1): 132-145, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116682

ABSTRACT

A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.


Subject(s)
Climate Change , Ecological Parameter Monitoring , Meteorological Concepts , Arctic Regions , Fresh Water , Geography , Geologic Sediments , Greenland , Ice Cover , Seasons , Water Movements
5.
Ambio ; 46(Suppl 1): 39-52, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116683

ABSTRACT

Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast Greenland to assess the seasonal response of a dwarf shrub heath, grassland, and fen, to inter-annual variation in snow-cover, soil moisture, and air and soil temperatures. A late snow melt and start of growing season is counterbalanced by a fast greenup and a tendency to higher peak greenness values. Snow water equivalents and soil moisture explained up to 77 % of growing season duration and senescence phase, highlighting that water availability is a prominent driver in the heath site, rather than temperatures. We found a significant advance in the start of spring by 10 days and in the end of fall by 11 days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity.


Subject(s)
Climate , Ecological Parameter Monitoring/methods , Plant Development , Arctic Regions , Grassland , Greenland , Seasons , Snow , Temperature , Time-Lapse Imaging
6.
Ambio ; 46(Suppl 1): 81-93, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116688

ABSTRACT

The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.


Subject(s)
Climate Change , Ecological Parameter Monitoring , Meteorological Concepts , Arctic Regions , Greenland , Ice Cover , Permafrost , Snow , Tundra
7.
Ambio ; 46(Suppl 1): 26-38, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116687

ABSTRACT

Insect outbreaks can have important consequences for tundra ecosystems. In this study, we synthesise available information on outbreaks of larvae of the noctuid moth Eurois occulta in Greenland. Based on an extensive dataset from a monitoring programme in Kobbefjord, West Greenland, we demonstrate effects of a larval outbreak in 2011 on vegetation productivity and CO2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118-143 g C m-2, corresponding to 1210-1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years by increased primary production, probably facilitated by the larval outbreak increasing nutrient turnover rates. Furthermore, we demonstrate for the first time in tundra ecosystems, the potential for using remote sensing to detect and map insect outbreak events.


Subject(s)
Carbon Dioxide/analysis , Ecological Parameter Monitoring , Herbivory , Moths/physiology , Tundra , Animals , Carbon Dioxide/metabolism , Climate , Greenland , Larva/growth & development , Larva/physiology , Moths/growth & development , Plant Physiological Phenomena
8.
Ambio ; 46(Suppl 1): 94-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116689

ABSTRACT

The objective of this paper is to characterize the spatiotemporal variations of vegetation phenology along latitudinal and altitudinal gradients in Greenland, and to examine local and regional climatic drivers. Time-series from the Moderate Resolution Imaging Spectroradiometer (MODIS) were analyzed to obtain various phenological metrics for the period 2001-2015. MODIS-derived land surface temperatures were corrected for the sampling biases caused by cloud cover. Results indicate significant differences between West and East Greenland, in terms of both observed phenology during the study period, as well as the climatic response. The date of the start of season (SOS) was significantly earlier (24 days), length of season longer (25 days), and time-integrated NDVI higher in West Greenland. The sea ice concentration during May was found to have a significant effect on the date of the SOS only in West Greenland, with the strongest linkage detected in mid-western parts of Greenland.


Subject(s)
Climate , Plant Development , Seasons , Arctic Regions , Ecological Parameter Monitoring , Geography , Greenland , Ice Cover , Population Dynamics , Remote Sensing Technology , Temperature , Tundra
9.
Ambio ; 46(Suppl 1): 146-159, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116690

ABSTRACT

Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50-80% of annual terrestrial runoff when considering different sections of Tyrolerfjord-Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff.


Subject(s)
Climate Change , Fresh Water , Ice Cover , Models, Theoretical , Arctic Regions , Ecological Parameter Monitoring , Greenland , Snow , Temperature , Weather
10.
Ambio ; 46(Suppl 1): 3-11, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116691

ABSTRACT

We investigated air temperature and pressure gradients and their trends for the period 1996-2014 in Greenland and compared these to other periods since 1958. Both latitudinal temperature and pressure gradients were strongest during winter. An overall temperature increase up to 0.15 °C year-1 was observed for 1996-2014. The strongest warming happened during February at the West coast (up to 0.6 °C year-1), weaker but consistent and significant warming occurred during summer months (up to 0.3 °C year-1) both in West and East Greenland. Pressure trends on a monthly basis were mainly negative, but largely statistically non-significant. Compared with other time windows in the past six decades, the period 1996-2014 yielded an above-average warming trend. Northeast Greenland and the area around Zackenberg follow the general pattern but are on the lower boundary of observed significant trends in Greenland. We conclude that temperature-driven ecosystem changes as observed in Zackenberg may well be exceeded in other areas of Greenland.


Subject(s)
Climate Change , Climate , Air Pressure , Arctic Regions , Ecological Parameter Monitoring , Geography , Greenland , Temperature
11.
Ambio ; 46(Suppl 1): 70-80, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116692

ABSTRACT

Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.


Subject(s)
Methane/analysis , Wetlands , Arctic Regions , Carbon Cycle , Climate Change , Ecological Parameter Monitoring/instrumentation , Ecological Parameter Monitoring/methods , Greenland , Seasons , Snow , Tundra
12.
Proc Natl Acad Sci U S A ; 112(15): 4594-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25831506

ABSTRACT

Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Subject(s)
Climate Change , Climate , Ecosystem , Wetlands , Carbon Dioxide/metabolism , Ecology/methods , Geography , Human Activities , Humans , Methane/metabolism , Models, Theoretical , Nitrous Oxide/metabolism , Plants/classification , Plants/metabolism , Temperature , Uncertainty
13.
Proc Natl Acad Sci U S A ; 112(9): 2788-93, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25730847

ABSTRACT

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Subject(s)
Ecosystem , Models, Biological , Plant Physiological Phenomena , Plants , South Dakota
14.
Sci Total Environ ; 514: 83-91, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25666278

ABSTRACT

Riverine mercury (Hg) export dynamics from the Zackenberg River Basin (ZRB) in Northeast Greenland were studied for the period 2009-2013. Dissolved and sediment-bound Hg was measured regularly in the Zackenberg River throughout the periods with running water (June-October) and coupled to water discharge measurements. Also, a few samples of snow, soil, and permafrost were analysed for Hg. Mean concentrations of dissolved and sediment-bound Hg in the river water (±SD) were 0.39 ± 0.13 and 5.5 ± 1.4 ngL(-1), respectively, and mean concentrations of Hg in the river sediment were 0.033 ± 0.025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96%) was associated with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 gH gk m(-2)yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial lake outburst floods in the ZRB in late summer at the time of maximum soil thaw depth, the location of the glacier in the upper ZRB, and increased thawing of the permafrost in Zackenberg in recent years leading to destabilisation of river banks are considered central factors explaining the high fraction of flood-controlled Hg export in this area.


Subject(s)
Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Greenland , Ice Cover/chemistry , Lakes/chemistry , Rivers/chemistry , Water Movements
15.
Glob Chang Biol ; 20(11): 3439-56, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24889888

ABSTRACT

In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.


Subject(s)
Ecosystem , Hot Temperature , Models, Theoretical , Arctic Regions , Asia , Europe , Forests , Grassland , North America , Tundra , Wetlands
16.
Proc Biol Sci ; 279(1746): 4417-22, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22977153

ABSTRACT

Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.


Subject(s)
Arvicolinae/physiology , Birds/physiology , Carnivora/physiology , Food Chain , Reproduction , Animals , Arctic Regions , Climate Change , Greenland , Models, Biological , Population Dynamics , Seasons
17.
New Phytol ; 194(3): 775-783, 2012 May.
Article in English | MEDLINE | ID: mdl-22404566

ABSTRACT

• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Plants/metabolism , Temperature , Acclimatization , Carbon Dioxide/radiation effects , Climate Change , Plants/radiation effects , Rain , Solar Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...