Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(20): 11345-11357, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37855661

ABSTRACT

Bacteria live in a broad range of environmental temperatures that require adaptations of their RNA sequences to maintain function. Riboswitches are regulatory RNAs that change conformation upon typically binding metabolite ligands to control bacterial gene expression. The paradigmatic small class-I preQ1 riboswitches from the mesophile Bacillus subtilis (Bsu) and the thermophile Thermoanaerobacter tengcongensis (Tte) adopt similar pseudoknot structures when bound to preQ1. Here, we use UV-melting analysis combined with single-molecule detected chemical denaturation by urea to compare the thermodynamic and kinetic folding properties of the two riboswitches, and the urea-countering effects of trimethylamine N-oxide (TMAO). Our results show that, first, the Tte riboswitch is more thermotolerant than the Bsu riboswitch, despite only subtle sequence differences. Second, using single-molecule FRET, we find that urea destabilizes the folded pseudoknot structure of both riboswitches, yet has a lower impact on the unfolding kinetics of the thermodynamically less stable Bsu riboswitch. Third, our analysis shows that TMAO counteracts urea denaturation and promotes folding of both the riboswitches, albeit with a smaller effect on the more stable Tte riboswitch. Together, these findings elucidate how subtle sequence adaptations in a thermophilic bacterium can stabilize a common RNA structure when a new ecological niche is conquered.


Subject(s)
Riboswitch , Riboswitch/genetics , Fluorescence Resonance Energy Transfer , Methylamines , Bacteria/genetics , Nucleic Acid Conformation , Ligands , RNA Folding
2.
Nucleic Acids Res ; 48(4): 2107-2125, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31832686

ABSTRACT

Ribosomal protein S1 plays important roles in the translation initiation step of many Escherichia coli mRNAs, particularly those with weak Shine-Dalgarno sequences or structured 5' UTRs, in addition to a variety of cellular processes beyond the ribosome. In all cases, the RNA-binding activity of S1 is a central feature of its function. While sequence determinants of S1 affinity and many elements of the interactions of S1 with simple secondary structures are known, mechanistic details of the protein's interactions with RNAs of more complex secondary and tertiary structure are less understood. Here, we investigate the interaction of S1 with the well-characterized H-type pseudoknot of a class-I translational preQ1 riboswitch as a highly structured RNA model whose conformation and structural dynamics can be tuned by the addition of ligands of varying binding affinity, particularly preQ1, guanine, and 2,6-diaminopurine. Combining biochemical and single molecule fluorescence approaches, we show that S1 preferentially interacts with the less folded form of the pseudoknot and promotes a dynamic, partially unfolded conformation. The ability of S1 to unfold the RNA is inversely correlated with the structural stability of the pseudoknot. These mechanistic insights delineate the scope and limitations of S1-chaperoned unfolding of structured RNAs.


Subject(s)
Nucleic Acid Conformation/drug effects , RNA/chemistry , Ribosomal Proteins/genetics , Riboswitch/genetics , 2-Aminopurine/analogs & derivatives , 2-Aminopurine/pharmacology , Binding Sites/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Guanine/pharmacology , Ligands , Pyrimidinones/pharmacology , Pyrroles/pharmacology , RNA/drug effects , RNA/genetics , RNA Folding/drug effects , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Ribosomes/genetics , Riboswitch/drug effects , Single Molecule Imaging
3.
Article in English | MEDLINE | ID: mdl-30936188

ABSTRACT

RNAs, across their numerous classes, often work in concert with proteins in RNA-protein complexes (RNPs) to execute critical cellular functions. Ensemble-averaging methods have been instrumental in revealing many important aspects of these RNA-protein interactions, yet are insufficiently sensitive to much of the dynamics at the heart of RNP function. Single-molecule fluorescence microscopy (SMFM) offers complementary, versatile tools to probe RNP conformational and compositional changes in detail. In this review, we first outline the basic principles of SMFM as applied to RNPs, describing key considerations for labeling, imaging, and quantitative analysis. We then sample applications of in vitro and in vivo single-molecule visualization using the case studies of pre-messenger RNA (mRNA) splicing and RNA silencing, respectively. After discussing specific insights single-molecule fluorescence methods have yielded, we briefly review recent developments in the field and highlight areas of anticipated growth.


Subject(s)
Microscopy, Fluorescence/methods , RNA-Binding Proteins/metabolism , RNA/metabolism , Single Molecule Imaging/methods , Protein Binding
4.
J Am Chem Soc ; 140(37): 11755-11762, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30125495

ABSTRACT

Conventional techniques for detecting rare DNA sequences require many cycles of PCR amplification for high sensitivity and specificity, potentially introducing significant biases and errors. While amplification-free methods exist, they rarely achieve the ability to detect single molecules, and their ability to discriminate between single-nucleotide variants is often dictated by the specificity limits of hybridization thermodynamics. Here we show that a direct detection approach using single-molecule kinetic fingerprinting can surpass the thermodynamic discrimination limit by 3 orders of magnitude, with a dynamic range of up to 5 orders of magnitude with optional super-resolution analysis. This approach detects mutations as subtle as the drug-resistance-conferring cancer mutation EGFR T790M (a single C → T substitution) with an estimated specificity of 99.99999%, surpassing even the leading PCR-based methods and enabling detection of 1 mutant molecule in a background of at least 1 million wild-type molecules. This level of specificity revealed rare, heat-induced cytosine deamination events that introduce false positives in PCR-based detection, but which can be overcome in our approach through milder thermal denaturation and enzymatic removal of damaged nucleobases.


Subject(s)
DNA/analysis , DNA/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Fluorescent Dyes/chemistry , Humans , Kinetics , Microscopy, Fluorescence , Mutation , Polymerase Chain Reaction
5.
Nat Commun ; 7: 8976, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26781350

ABSTRACT

In response to intracellular signals in Gram--negative bacteria, translational riboswitches--commonly embedded in messenger RNAs (mRNAs)-regulate gene expression through inhibition of translation initiation. It is generally thought that this regulation originates from occlusion of the Shine-Dalgarno (SD) sequence upon ligand binding; however, little direct evidence exists. Here we develop Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) to investigate the ligand-dependent accessibility of the SD sequence of an mRNA hosting the 7-aminomethyl-7-deazaguanine (preQ1)-sensing riboswitch. Spike train analysis reveals that individual mRNA molecules alternate between two conformational states, distinguished by 'bursts' of probe binding associated with increased SD sequence accessibility. Addition of preQ1 decreases the lifetime of the SD's high-accessibility (bursting) state and prolongs the time between bursts. In addition, ligand-jump experiments reveal imperfect riboswitching of single mRNA molecules. Such complex ligand sensing by individual mRNA molecules rationalizes the nuanced ligand response observed during bulk mRNA translation.


Subject(s)
RNA, Messenger/genetics , Riboswitch/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Bacterial/genetics , Spectrometry, Fluorescence , Thermoanaerobacter/genetics
6.
Biopolymers ; 103(5): 296-302, 2015 May.
Article in English | MEDLINE | ID: mdl-25546606

ABSTRACT

Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines.


Subject(s)
Microscopy, Fluorescence , Congresses as Topic
7.
Cancer Res ; 74(2): 598-608, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24305879

ABSTRACT

The drug efflux function of P-glycoprotein (P-gp) encoded by MDR1 can be influenced by genetic polymorphisms, including two synonymous changes in the coding region of MDR1. Here we report that the conformation of P-gp and its drug efflux activity can be altered by synonymous polymorphisms in stable epithelial monolayers expressing P-gp. Several cell lines with similar MDR1 DNA copy number were developed and termed LLC-MDR1-WT (expresses wild-type P-gp), LLC-MDR1-3H (expresses common haplotype P-gp), and LLC-MDR1-3HA (a mutant that carries a different valine codon in position 3435). These cell lines express similar levels of recombinant mRNA and protein. P-gp in each case is localized on the apical surface of polarized cells. However, the haplotype and its mutant P-gps fold differently from the wild-type, as determined by UIC2 antibody shift assays and limited proteolysis assays. Surface biotinylation experiments suggest that the non-wild-type P-gps have longer recycling times. Drug transport assays show that wild-type and haplotype P-gp respond differently to P-gp inhibitors that block efflux of rhodamine 123 or mitoxantrone. In addition, cytotoxicity assays show that the LLC-MDR1-3H cells are more resistant to mitoxantrone than the LLC-MDR1-WT cells after being treated with a P-gp inhibitor. Expression of polymorphic P-gp, however, does not affect the host cell's morphology, growth rate, or monolayer formation. Also, ATPase activity assays indicate that neither basal nor drug-stimulated ATPase activities are affected in the variant P-gps. Taken together, our findings indicate that "silent" polymorphisms significantly change P-gp function, which would be expected to affect interindividual drug disposition and response.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Gene Expression Regulation, Neoplastic , Polymorphism, Genetic , ATP Binding Cassette Transporter, Subfamily B , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Biotinylation , Cell Line , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Haplotypes , Humans , Mitoxantrone/chemistry , Mutation , Protein Stability , Recombinant Proteins/chemistry , Rhodamine 123/chemistry , Swine
8.
PLoS One ; 6(3): e17981, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21445346

ABSTRACT

Peptide nucleic acid (PNA) is known to bind with extraordinarily high affinity and sequence-specificity to complementary nucleic acid sequences and can be used to suppress gene expression. However, effective delivery into cells is a major obstacle to the development of PNA for gene therapy applications. Here, we present a novel method for the in vitro delivery of antigene PNA to cells. By using a nucleocapsid protein derived from Simian virus 40, we have been able to package PNA into pseudovirions, facilitating the delivery of the packaged PNA into cells. We demonstrate that this system can be used effectively to suppress gene expression associated with multidrug resistance in cancer cells, as shown by RT-PCR, flow cytometry, Western blotting, and cell viability under chemotherapy. The combination of PNA with the SV40-based delivery system is a method for suppressing a gene of interest that could be broadly applied to numerous targets.


Subject(s)
Drug Resistance, Multiple , Peptide Nucleic Acids/administration & dosage , Simian virus 40/physiology , Virion/physiology , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Cells, Cultured , Gene Silencing , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
9.
Pharm Res ; 27(3): 400-20, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19998056

ABSTRACT

Over the last two decades, small interfering RNA (siRNA)-mediated gene silencing has quickly become one of the most powerful techniques used to study gene function in vitro and a promising area for new therapeutics. Delivery remains a significant impediment to realizing the therapeutic potential of siRNA, a problem that is also tied to immunogenicity and toxicity. Numerous delivery vehicles have been developed, including some that can be categorized as pseudovirions: these are vectors that are directly derived from viruses but whose viral coding sequences have been eliminated, preventing their classification as viral vectors. Characteristics of the pseudovirions discussed in this review, namely phagemids, HSV amplicons, SV40 in vitro-packaged vectors, influenza virosomes, and HVJ-Envelope vectors, make them attractive for the delivery of siRNA-based therapeutics. Pseudovirions were shown to deliver siRNA effector molecules and bring about RNA interference (RNAi) in various cell types in vitro, and in vivo using immune-deficient and immune-competent mouse models. Levels of silencing were not always determined directly, but the duration of siRNA-induced knockdown lasted at least 3 days. We present examples of the use of pseudovirions for the delivery of synthetic siRNA as well as the delivery and expression of DNA-directed siRNA.


Subject(s)
RNA, Small Interfering/administration & dosage , Virosomes/chemistry , Viruses/chemistry , Animals , Humans , Virosomes/genetics , Virosomes/metabolism , Viruses/genetics , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...