Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915586

ABSTRACT

The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.

2.
Nat Metab ; 6(4): 697-707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413806

ABSTRACT

Post-translational modifications (PTMs) on histones are a key source of regulation on chromatin through impacting cellular processes, including gene expression1. These PTMs often arise from metabolites and are thus impacted by metabolism and environmental cues2-7. One class of metabolically regulated PTMs are histone acylations, which include histone acetylation, butyrylation, crotonylation and propionylation3,8. As these PTMs can be derived from short-chain fatty acids, which are generated by the commensal microbiota in the intestinal lumen9-11, we aimed to define how microbes impact the host intestinal chromatin landscape, mainly in female mice. Here we show that in addition to acetylation, intestinal epithelial cells from the caecum and distal mouse intestine also harbour high levels of butyrylation and propionylation on lysines 9 and 27 of histone H3. We demonstrate that these acylations are regulated by the microbiota and that histone butyrylation is additionally regulated by the metabolite tributyrin. Tributyrin-regulated gene programmes are correlated with histone butyrylation, which is associated with active gene-regulatory elements and levels of gene expression. Together, our study uncovers a regulatory layer of how the microbiota and metabolites influence the intestinal epithelium through chromatin, demonstrating a physiological setting in which histone acylations are dynamically regulated and associated with gene regulation.


Subject(s)
Gastrointestinal Microbiome , Gene Expression Regulation , Histones , Protein Processing, Post-Translational , Animals , Histones/metabolism , Mice , Female , Intestinal Mucosa/metabolism , Acetylation , Intestines/microbiology , Triglycerides/metabolism , Mice, Inbred C57BL
3.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931244

ABSTRACT

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Subject(s)
DNA Methyltransferase 3A , Histones , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , Histones/metabolism , Neuroinflammatory Diseases
4.
Cell Rep ; 41(11): 111809, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516747

ABSTRACT

The gut microbiota influences acetylation on host histones by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-coenzyme A (CoA), a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.


Subject(s)
Colitis , Microbiota , Mice , Animals , Acetylation , Histones/metabolism , Histone Acetyltransferases/metabolism , Isotopes/metabolism , Carbon/metabolism , Butyrates , Fatty Acids
5.
Mol Omics ; 18(4): 296-314, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35044400

ABSTRACT

Histone variants, such as histone H3.3, replace canonical histones within the nucleosome to alter chromatin accessibility and gene expression. Although the biological roles of selected histone post-translational modifications (PTMs) have been extensively characterized, the potential differences in the function of a given PTM on different histone variants is almost always elusive. By applying proteomics and genomics techniques, we investigate the role of lysine 27 tri-methylation specifically on the histone variant H3.3 (H3.3K27me3) in the context of mouse embryonic stem cell pluripotency and differentiation as a model system for development. We demonstrate that while the steady state overall levels of methylation on both H3K27 and H3.3K27 decrease during differentiation, methylation dynamics studies indicate that methylation on H3.3K27 is maintained more than on H3K27. Using a custom-made antibody, we identify a unique enrichment of H3.3K27me3 at lineage-specific genes, such as olfactory receptor genes, and at binding motifs for the transcription factors FOXJ2/3. REST, a predicted FOXJ2/3 target that acts as a transcriptional repressor of terminal neuronal genes, was identified with H3.3K27me3 at its promoter region. H3.3K27A mutant cells confirmed an upregulation of FOXJ2/3 targets upon the loss of methylation at H3.3K27. Thus, while canonical H3K27me3 has been characterized to regulate the expression of transcription factors that play a general role in differentiation, our work suggests H3.3K27me3 is essential for regulating distinct terminal differentiation genes. This work highlights the importance of understanding the effects of PTMs not only on canonical histones but also on specific histone variants, as they may exhibit distinct roles.


Subject(s)
Histones , Lysine , Animals , Cell Differentiation/genetics , Histones/genetics , Histones/metabolism , Lysine/chemistry , Methylation , Mice , Protein Processing, Post-Translational , Transcription Factors/genetics
6.
Mol Omics ; 17(5): 725-739, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34636387

ABSTRACT

Paradoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Knowledge of how these pathways operate, and how tumor cells may evade these pathways, is important for understanding tumorigenesis. The Y1 cell line, which harbors an amplification of the proto-oncogene Ras, rapidly senesces in response to the mitogen fibroblast growth factor-2 (FGF-2). To gain a more complete picture of how FGF-2 promotes senescence, we employed a multi-omics approach to analyze histone modifications, mRNA and protein expression, and protein phosphorylation in Y1 cells treated with FGF-2. Compared to control cells treated with serum alone, FGF-2 caused a delayed accumulation of acetylation on histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. At the same time, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. We propose that Y1 cells senesce due to an inability to progress through the cell cycle, which may stem from DNA damage or TGFb signaling. Altogether, the phenotype of Y1 cells is consistent with rapidly established oncogene-induced senescence, demonstrating the synergy between growth factors and oncogenes in driving senescence and bringing additional insight into this tumor suppressor mechanism.


Subject(s)
Fibroblast Growth Factor 2 , Genes, ras , Signal Transduction , Cell Cycle/genetics , Cell Line , Fibroblast Growth Factor 2/genetics , Gene Amplification , Oncogenes/genetics
7.
Hepatology ; 74(6): 3427-3440, 2021 12.
Article in English | MEDLINE | ID: mdl-34233020

ABSTRACT

BACKGROUND AND AIMS: Although germ-free mice are an indispensable tool in studying the gut microbiome and its effects on host physiology, they are phenotypically different than their conventional counterparts. While antibiotic-mediated microbiota depletion in conventional mice leads to physiologic alterations that often mimic the germ-free state, the degree to which the effects of microbial colonization on the host are reversible is unclear. The gut microbiota produce abundant short chain fatty acids (SCFAs), and previous studies have demonstrated a link between microbial-derived SCFAs and global hepatic histone acetylation in germ-free mice. APPROACH AND RESULTS: We demonstrate that global hepatic histone acetylation states measured by mass spectrometry remained largely unchanged despite loss of luminal and portal vein SCFAs after antibiotic-mediated microbiota depletion. In contrast to stable hepatic histone acetylation states, we see robust hepatic transcriptomic alterations after microbiota depletion. Additionally, neither dietary supplementation with supraphysiologic levels of SCFA nor the induction of hepatocyte proliferation in the absence of microbiota-derived SCFAs led to alterations in global hepatic histone acetylation. CONCLUSIONS: These results suggest that microbiota-dependent landscaping of the hepatic epigenome through global histone acetylation is static in nature, while the hepatic transcriptome is responsive to alterations in the gut microbiota.


Subject(s)
Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Histone Acetyltransferases/metabolism , Animals , Cell Line , Male , Mice, Inbred C57BL
8.
Mol Omics, v. 17, n. 5, p. 725-739, maio. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3872

ABSTRACT

Paradoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Knowledge of how these pathways operate, and how tumor cells may evade these pathways, is important for understanding tumorigenesis. The Y1 cell line, which harbors an amplification of the proto-oncogene Ras, rapidly senesces in response to the mitogen fibroblast growth factor-2 (FGF-2). To gain a more complete picture of how FGF-2 promotes senescence, we employed a multi-omics approach to analyze histone modifications, mRNA and protein expression, and protein phosphorylation in Y1 cells treated with FGF-2. Compared to control cells treated with serum alone, FGF-2 caused a delayed accumulation of acetylation on histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. At the same time, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. We propose that Y1 cells senesce due to an inability to progress through the cell cycle, which may stem from DNA damage or TGFb signaling. Altogether, the phenotype of Y1 cells is consistent with rapidly established oncogene-induced senescence, demonstrating the synergy between growth factors and oncogenes in driving senescence and bringing additional insight into this tumor suppressor mechanism.

9.
J Proteome Res ; 19(10): 4163-4178, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32966080

ABSTRACT

Proteoforms containing post-translational modifications (PTMs) represent a degree of functional diversity only harnessed through analytically precise simultaneous quantification of multiple PTMs. Here we present a method to accurately differentiate an unmodified peptide from its PTM-containing counterpart through data-independent acquisition-mass spectrometry, leveraging small precursor mass windows to physically separate modified peptidoforms from each other during MS2 acquisition. We utilize a lysine and arginine PTM-enriched peptide assay library and site localization algorithm to simultaneously localize and quantify seven PTMs including mono-, di-, and trimethylation, acetylation, and succinylation in addition to total protein quantification in a single MS run without the need to enrich experimental samples. To evaluate biological relevance, this method was applied to liver lysate from differentially methylated nonalcoholic steatohepatitis (NASH) mouse models. We report that altered methylation and acetylation together with total protein changes drive the novel hypothesis of a regulatory function of PTMs in protein synthesis and mRNA stability in NASH.


Subject(s)
Liver Diseases , Lysine , Acetylation , Animals , Arginine , Lysine/metabolism , Mice , Protein Processing, Post-Translational , Proteomics
10.
Nat Microbiol ; 5(6): 838-847, 2020 06.
Article in English | MEDLINE | ID: mdl-32284564

ABSTRACT

Initial microbial colonization and later succession in the gut of human infants are linked to health and disease later in life. The timing of the appearance of the first gut microbiome, and the consequences for the early life metabolome, are just starting to be defined. Here, we evaluated the gut microbiome, proteome and metabolome in 88 African-American newborns using faecal samples collected in the first few days of life. Gut bacteria became detectable using molecular methods by 16 h after birth. Detailed analysis of the three most common species, Escherichia coli, Enterococcus faecalis and Bacteroides vulgatus, did not suggest a genomic signature for neonatal gut colonization. The appearance of bacteria was associated with reduced abundance of approximately 50 human proteins, decreased levels of free amino acids and an increase in products of bacterial fermentation, including acetate and succinate. Using flux balance modelling and in vitro experiments, we provide evidence that fermentation of amino acids provides a mechanism for the initial growth of E. coli, the most common early colonizer, under anaerobic conditions. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Bacteria/classification , Bacteria/genetics , Cohort Effect , Computational Biology/methods , Feces/microbiology , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Metabolome , Metabolomics/methods , Metagenomics/methods , Phylogeny , Proteomics/methods
11.
Methods Enzymol ; 626: 475-498, 2019.
Article in English | MEDLINE | ID: mdl-31606088

ABSTRACT

Since protein activity is often regulated by posttranslational modifications, the qualitative and quantitative analysis of modification sites is critical for understanding the regulation of biological pathways that control cell function and phenotype. Methylation constitutes one of the many types of posttranslational modifications that target lysine residues. Although lysine methylation is perhaps most commonly associated with histone proteins and the epigenetic regulation of processes involving chromatin, methylation has also been observed as an important regulatory modification on other proteins, which has spurred the development of methods to profile lysine methylation sites more globally. As with many posttranslational modifications, tandem mass spectrometry represents an ideal platform for the high-throughput analysis of lysine methylation due to its high sensitivity and resolving power. The following protocol outlines a general method to assay lysine methylation across the proteome using SILAC and quantitative proteomics. First, cells are labeled by SILAC to allow for relative quantitation across different experimental conditions, such as cells with or without ectopic expression of a methyltransferase. Next, cells are lysed and proteins are digested into peptides. Methylated peptides are then enriched by immunoprecipitation with pan-specific antibodies against methylated lysine. Finally, the enriched peptides are analyzed by LC-MS/MS to identify methylated peptides and their modification sites and to compare the relative abundance of methylation events between different conditions. This approach should yield detection of a couple hundred lysine methylation sites, and those showing differential abundance may then be prioritized for further study.


Subject(s)
Lysine/analysis , Proteins/chemistry , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Humans , Methylation , Protein Processing, Post-Translational
12.
Sci Rep ; 9(1): 13613, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541121

ABSTRACT

Histone post-translational modifications (PTMs) contribute to chromatin accessibility due to their chemical properties and their ability to recruit enzymes responsible for DNA readout and chromatin remodeling. To date, more than 400 different histone PTMs and thousands of combinations of PTMs have been identified, the vast majority with still unknown biological function. Identification and quantification of histone PTMs has become routine in mass spectrometry (MS) but, since raising antibodies for each PTM in a study can be prohibitive, lots of potential is lost from MS datasets when uncharacterized PTMs are found to be significantly regulated. We developed an assay that uses metabolic labeling and MS to associate chromatin accessibility with histone PTMs and their combinations. The labeling is achieved by spiking in the cell media a 5x concentration of stable isotope labeled arginine and allow cells to grow for at least one cell cycle. We quantified the labeling incorporation of about 200 histone peptides with a proteomics workflow, and we confirmed that peptides carrying PTMs with extensively characterized roles in active transcription or gene silencing were in highly or poorly labeled forms, respectively. Data were further validated using next-generation sequencing to assess the transcription rate of chromatin regions modified with five selected PTMs. Furthermore, we quantified the labeling rate of peptides carrying co-existing PTMs, proving that this method is suitable for combinatorial PTMs. We focus on the abundant bivalent mark H3K27me3K36me2, showing that H3K27me3 dominantly represses histone swapping rate even in the presence of the more permissive PTM H3K36me2. Together, we envision this method will help to generate hypotheses regarding histone PTM functions and, potentially, elucidate the role of combinatorial histone codes.


Subject(s)
Histone Code/physiology , Mass Spectrometry/methods , Metabolomics/methods , Animals , Arginine/metabolism , Biological Assay , Cell Line, Tumor , Chromatin/metabolism , DNA/metabolism , Histones/metabolism , Mice , Peptides/metabolism , Protein Processing, Post-Translational , Proteomics/methods
13.
Genes Dev ; 33(19-20): 1428-1440, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31488577

ABSTRACT

The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring independently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2. Our study demonstrates a PRC2 self-regulatory mechanism through its EZH1/2-mediated automethylation activity.


Subject(s)
Glioma/enzymology , Glioma/genetics , Histones/metabolism , Child , Enzyme Activation , Gene Silencing , Histones/genetics , Humans , Lysine/metabolism , Methylation , Polycomb Repressive Complex 2/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism
15.
Cell Rep ; 27(13): 3939-3955.e6, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242425

ABSTRACT

The impact of glucose metabolism on muscle regeneration remains unresolved. We identify glucose metabolism as a crucial driver of histone acetylation and myogenic cell fate. We use single-cell mass cytometry (CyTOF) and flow cytometry to characterize the histone acetylation and metabolic states of quiescent, activated, and differentiating muscle stem cells (MuSCs). We find glucose is dispensable for mitochondrial respiration in proliferating MuSCs, so that glucose becomes available for maintaining high histone acetylation via acetyl-CoA. Conversely, quiescent and differentiating MuSCs increase glucose utilization for respiration and have consequently reduced acetylation. Pyruvate dehydrogenase (PDH) activity serves as a rheostat for histone acetylation and must be controlled for muscle regeneration. Increased PDH activity in proliferation increases histone acetylation and chromatin accessibility at genes that must be silenced for differentiation to proceed, and thus promotes self-renewal. These results highlight metabolism as a determinant of MuSC histone acetylation, fate, and function during muscle regeneration.


Subject(s)
Muscle, Skeletal/physiology , Myoblasts, Skeletal/metabolism , Regeneration , Acetylation , Animals , Glucose , Histones , Mass Spectrometry , Mice , Muscle, Skeletal/cytology , Single-Cell Analysis
16.
Nat Commun ; 10(1): 2146, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086175

ABSTRACT

Posterior fossa type A (PFA) ependymomas exhibit very low H3K27 methylation and express high levels of EZHIP (Enhancer of Zeste Homologs Inhibitory Protein, also termed CXORF67). Here we find that a conserved sequence in EZHIP is necessary and sufficient to inhibit PRC2 catalytic activity in vitro and in vivo. EZHIP directly contacts the active site of the EZH2 subunit in a mechanism similar to the H3 K27M oncohistone. Furthermore, expression of H3 K27M or EZHIP in cells promotes similar chromatin profiles: loss of broad H3K27me3 domains, but retention of H3K27me3 at CpG islands. We find that H3K27me3-mediated allosteric activation of PRC2 substantially increases the inhibition potential of EZHIP and H3 K27M, providing a mechanism to explain the observed loss of H3K27me3 spreading in tumors. Our data indicate that PFA ependymoma and DIPG are driven in part by the action of peptidyl PRC2 inhibitors, the K27M oncohistone and the EZHIP 'oncohistone-mimic', that dysregulate gene silencing to promote tumorigenesis.


Subject(s)
Brain Neoplasms/genetics , Ependymoma/genetics , Glioma/genetics , Oncogene Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Brain Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin/metabolism , CpG Islands , Cranial Fossa, Posterior , Datasets as Topic , Embryo, Mammalian , Ependymoma/pathology , Fibroblasts , Gene Expression Regulation, Neoplastic , Gene Silencing , Glioma/pathology , HEK293 Cells , Histones , Humans , Mice , Oncogene Proteins/genetics , Primary Cell Culture , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
17.
Methods Mol Biol ; 1977: 43-70, 2019.
Article in English | MEDLINE | ID: mdl-30980322

ABSTRACT

Lysine acetylation is an important posttranslational modification (PTM) that regulates the function of proteins by affecting their localization, stability, binding, and enzymatic activity. Aberrant acetylation patterns have been observed in numerous diseases, most notably cancer, which has spurred the development of potential therapeutics that target acetylation pathways. Mass spectrometry (MS) has become the most adopted tool not only for the qualitative identification of acetylation sites but also for their large-scale quantification. By using heavy isotope labeling in cell culture combined with MS, it is now possible to accurately quantify newly synthesized acetyl groups and other PTMs, allowing differentiation between dynamically regulated and steady-state modifications. Here, we describe MS-based protocols to identify acetylation sites and quantify acetylation rates on both proteins in general and in the special case of histones. In the experimental approach for the former, 13C-glucose and D3-acetate are used to metabolically label protein acetylation in cells with stable isotopes, thus allowing isotope incorporation to be tracked over time. After protein extraction and digestion, acetylated peptides are enriched via immunoprecipitation and then analyzed by MS. For histones, a similar metabolic labeling approach is performed, followed by acid extraction, derivatization with propionic anhydride, and trypsin digestion prior to MS analysis. The procedures presented may be adapted to investigate acetylation dynamics in a broad range of experimental contexts, including different cell types and stimulation conditions.


Subject(s)
Histones/metabolism , Isotope Labeling , Proteomics , Acetylation , Cell Culture Techniques , Chromatography, Liquid , Data Interpretation, Statistical , Databases, Protein , Humans , Lysine/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Tandem Mass Spectrometry
18.
Sci. rep. ; 9: 13613, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17203

ABSTRACT

Histone post-translational modifications (PTMs) contribute to chromatin accessibility due to their chemical properties and their ability to recruit enzymes responsible for DNA readout and chromatin remodeling. To date, more than 400 different histone PTMs and thousands of combinations of PTMs have been identified, the vast majority with still unknown biological function. Identification and quantification of histone PTMs has become routine in mass spectrometry (MS) but, since raising antibodies for each PTM in a study can be prohibitive, lots of potential is lost from MS datasets when uncharacterized PTMs are found to be significantly regulated. We developed an assay that uses metabolic labeling and MS to associate chromatin accessibility with histone PTMs and their combinations. The labeling is achieved by spiking in the cell media a 5x concentration of stable isotope labeled arginine and allow cells to grow for at least one cell cycle. We quantified the labeling incorporation of about 200 histone peptides with a proteomics workflow, and we confirmed that peptides carrying PTMs with extensively characterized roles in active transcription or gene silencing were in highly or poorly labeled forms, respectively. Data were further validated using next-generation sequencing to assess the transcription rate of chromatin regions modified with five selected PTMs. Furthermore, we quantified the labeling rate of peptides carrying co-existing PTMs, proving that this method is suitable for combinatorial PTMs. We focus on the abundant bivalent mark H3K27me3K36me2, showing that H3K27me3 dominantly represses histone swapping rate even in the presence of the more permissive PTM H3K36me2. Together, we envision this method will help to generate hypotheses regarding histone PTM functions and, potentially, elucidate the role of combinatorial histone codes.

19.
Sci rep, v. 9, 13613, sep. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2840

ABSTRACT

Histone post-translational modifications (PTMs) contribute to chromatin accessibility due to their chemical properties and their ability to recruit enzymes responsible for DNA readout and chromatin remodeling. To date, more than 400 different histone PTMs and thousands of combinations of PTMs have been identified, the vast majority with still unknown biological function. Identification and quantification of histone PTMs has become routine in mass spectrometry (MS) but, since raising antibodies for each PTM in a study can be prohibitive, lots of potential is lost from MS datasets when uncharacterized PTMs are found to be significantly regulated. We developed an assay that uses metabolic labeling and MS to associate chromatin accessibility with histone PTMs and their combinations. The labeling is achieved by spiking in the cell media a 5x concentration of stable isotope labeled arginine and allow cells to grow for at least one cell cycle. We quantified the labeling incorporation of about 200 histone peptides with a proteomics workflow, and we confirmed that peptides carrying PTMs with extensively characterized roles in active transcription or gene silencing were in highly or poorly labeled forms, respectively. Data were further validated using next-generation sequencing to assess the transcription rate of chromatin regions modified with five selected PTMs. Furthermore, we quantified the labeling rate of peptides carrying co-existing PTMs, proving that this method is suitable for combinatorial PTMs. We focus on the abundant bivalent mark H3K27me3K36me2, showing that H3K27me3 dominantly represses histone swapping rate even in the presence of the more permissive PTM H3K36me2. Together, we envision this method will help to generate hypotheses regarding histone PTM functions and, potentially, elucidate the role of combinatorial histone codes.

20.
Cell ; 175(2): 502-513.e13, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30245009

ABSTRACT

Acetate is a major nutrient that supports acetyl-coenzyme A (Ac-CoA) metabolism and thus lipogenesis and protein acetylation. However, its source is unclear. Here, we report that pyruvate, the end product of glycolysis and key node in central carbon metabolism, quantitatively generates acetate in mammals. This phenomenon becomes more pronounced in the context of nutritional excess, such as during hyperactive glucose metabolism. Conversion of pyruvate to acetate occurs through two mechanisms: (1) coupling to reactive oxygen species (ROS) and (2) neomorphic enzyme activity from keto acid dehydrogenases that enable function as pyruvate decarboxylases. Further, we demonstrate that de novo acetate production sustains Ac-CoA pools and cell proliferation in limited metabolic environments, such as during mitochondrial dysfunction or ATP citrate lyase (ACLY) deficiency. By virtue of de novo acetate production being coupled to mitochondrial metabolism, there are numerous possible regulatory mechanisms and links to pathophysiology.


Subject(s)
Acetates/metabolism , Glucose/metabolism , Pyruvic Acid/metabolism , ATP Citrate (pro-S)-Lyase/physiology , Acetyl Coenzyme A/biosynthesis , Acetyl Coenzyme A/metabolism , Acetylation , Animals , Female , Glycolysis/physiology , Lipogenesis/physiology , Male , Mammals/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidoreductases , Pyruvate Decarboxylase/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...