Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Artif Intell ; 6(3): e230375, 2024 May.
Article in English | MEDLINE | ID: mdl-38597784

ABSTRACT

Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload. Keywords: Mammography, Breast, Screening, Convolutional Neural Network (CNN), Deep Learning Algorithms Supplemental material is available for this article. © RSNA, 2024 See also commentary by Bahl and Do in this issue.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Early Detection of Cancer , Mammography , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/diagnosis , Female , Mammography/methods , Norway/epidemiology , Retrospective Studies , Middle Aged , Early Detection of Cancer/methods , Aged , Adult , Mass Screening/methods , Radiographic Image Interpretation, Computer-Assisted/methods
2.
Arthroscopy ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38453096

ABSTRACT

PURPOSE: To analyze the results of the subscapular sling procedure developed for anterior shoulder instability in patients with less than 10% anterior glenoid bone loss. METHODS: Patients were treated surgically with the arthroscopic subscapular sling procedure. A semitendinosus graft was used to reconstruct the anterior labrum and to establish a sling suspension around the upper part of the subscapularis tendon. The patients were followed up with radiographs (at 12 and 24 months). Magnetic resonance imaging (MRI) of the shoulder region and clinical examinations were performed at 3, 12, and 24 months. Recurrent dislocation was the primary endpoint. The Western Ontario Shoulder Instability Index (WOSI) and MRI results were secondary outcome measures. An independent physiotherapist assessed residual instability and range of motion. RESULTS: Fifteen patients were included with a dislocation rate of 0% after 24 months follow-up. There was a significant clinical improvement of the WOSI score from 57% (904) at baseline to 88% (241) at 24 months (P < .001). The proportion of patients with an improvement in the WOSI Total score larger than the estimated minimal clinically important difference was 100% both at 12 and 24 months. MRI showed an intact sling in all patients. External rotation was not significantly reduced (52° at baseline vs 47° at 24 months, P = .211). Flexion and abduction were significantly improved from 152° to 174° (P = .001) and 141° to 170° (P < .001) after 24 months. The surgical procedures were completed without any intraoperative complications. CONCLUSIONS: The subscapular sling procedure resulted in low recurrent shoulder instability and improved patient-reported outcome measures at 24 months of follow-up. LEVEL OF EVIDENCE: Level IV, case series.

3.
Radiology ; 309(1): e230989, 2023 10.
Article in English | MEDLINE | ID: mdl-37847135

ABSTRACT

Background Few studies have evaluated the role of artificial intelligence (AI) in prior screening mammography. Purpose To examine AI risk scores assigned to screening mammography in women who were later diagnosed with breast cancer. Materials and Methods Image data and screening information of examinations performed from January 2004 to December 2019 as part of BreastScreen Norway were used in this retrospective study. Prior screening examinations from women who were later diagnosed with cancer were assigned an AI risk score by a commercially available AI system (scores of 1-7, low risk of malignancy; 8-9, intermediate risk; and 10, high risk of malignancy). Mammographic features of the cancers based on the AI score were also assessed. The association between AI score and mammographic features was tested with a bivariate test. Results A total of 2787 prior screening examinations from 1602 women (mean age, 59 years ± 5.1 [SD]) with screen-detected (n = 1016) or interval (n = 586) cancers showed an AI risk score of 10 for 389 (38.3%) and 231 (39.4%) cancers, respectively, on the mammograms in the screening round prior to diagnosis. Among the screen-detected cancers with AI scores available two screening rounds (4 years) before diagnosis, 23.0% (122 of 531) had a score of 10. Mammographic features were associated with AI score for invasive screen-detected cancers (P < .001). Density with calcifications was registered for 13.6% (43 of 317) of screen-detected cases with a score of 10 and 4.6% (15 of 322) for those with a score of 1-7. Conclusion More than one in three cases of screen-detected and interval cancers had the highest AI risk score at prior screening, suggesting that the use of AI in mammography screening may lead to earlier detection of breast cancers. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Mehta in this issue.


Subject(s)
Breast Neoplasms , Female , Humans , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Mammography/methods , Retrospective Studies , Artificial Intelligence , Early Detection of Cancer/methods , Risk Factors , Mass Screening/methods
4.
Eur Radiol ; 32(12): 8238-8246, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35704111

ABSTRACT

OBJECTIVES: Artificial intelligence (AI) has shown promising results when used on retrospective data from mammographic screening. However, few studies have explored the possible consequences of different strategies for combining AI and radiologists in screen-reading. METHODS: A total of 122,969 digital screening examinations performed between 2009 and 2018 in BreastScreen Norway were retrospectively processed by an AI system, which scored the examinations from 1 to 10; 1 indicated low suspicion of malignancy and 10 high suspicion. Results were merged with information about screening outcome and used to explore consensus, recall, and cancer detection for 11 different scenarios of combining AI and radiologists. RESULTS: Recall was 3.2%, screen-detected cancer 0.61% and interval cancer 0.17% after independent double reading and served as reference values. In a scenario where examinations with AI scores 1-5 were considered negative and 6-10 resulted in standard independent double reading, the estimated recall was 2.6% and screen-detected cancer 0.60%. When scores 1-9 were considered negative and score 10 double read, recall was 1.2% and screen-detected cancer 0.53%. In these two scenarios, potential rates of screen-detected cancer could be up to 0.63% and 0.56%, if the interval cancers selected for consensus were detected at screening. In the former scenario, screen-reading volume would be reduced by 50%, while the latter would reduce the volume by 90%. CONCLUSION: Several theoretical scenarios with AI and radiologists have the potential to reduce the volume in screen-reading without affecting cancer detection substantially. Possible influence on recall and interval cancers must be evaluated in prospective studies. KEY POINTS: • Different scenarios using artificial intelligence in combination with radiologists could reduce the screen-reading volume by 50% and result in a rate of screen-detected cancer ranging from 0.59% to 0.60%, compared to 0.61% after standard independent double reading • The use of artificial intelligence in combination with radiologists has the potential to identify negative screening examinations with high precision in mammographic screening and to reduce the rate of interval cancer.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Female , Retrospective Studies , Prospective Studies , Mammography/methods , Mass Screening/methods , Early Detection of Cancer/methods , Breast Neoplasms/diagnostic imaging
5.
Radiology ; 303(3): 502-511, 2022 06.
Article in English | MEDLINE | ID: mdl-35348377

ABSTRACT

Background Artificial intelligence (AI) has shown promising results for cancer detection with mammographic screening. However, evidence related to the use of AI in real screening settings remain sparse. Purpose To compare the performance of a commercially available AI system with routine, independent double reading with consensus as performed in a population-based screening program. Furthermore, the histopathologic characteristics of tumors with different AI scores were explored. Materials and Methods In this retrospective study, 122 969 screening examinations from 47 877 women performed at four screening units in BreastScreen Norway from October 2009 to December 2018 were included. The data set included 752 screen-detected cancers (6.1 per 1000 examinations) and 205 interval cancers (1.7 per 1000 examinations). Each examination had an AI score between 1 and 10, where 1 indicated low risk of breast cancer and 10 indicated high risk. Threshold 1, threshold 2, and threshold 3 were used to assess the performance of the AI system as a binary decision tool (selected vs not selected). Threshold 1 was set at an AI score of 10, threshold 2 was set to yield a selection rate similar to the consensus rate (8.8%), and threshold 3 was set to yield a selection rate similar to an average individual radiologist (5.8%). Descriptive statistics were used to summarize screening outcomes. Results A total of 653 of 752 screen-detected cancers (86.8%) and 92 of 205 interval cancers (44.9%) were given a score of 10 by the AI system (threshold 1). Using threshold 3, 80.1% of the screen-detected cancers (602 of 752) and 30.7% of the interval cancers (63 of 205) were selected. Screen-detected cancer with AI scores not selected using the thresholds had favorable histopathologic characteristics compared to those selected; opposite results were observed for interval cancer. Conclusion The proportion of screen-detected cancers not selected by the artificial intelligence (AI) system at the three evaluated thresholds was less than 20%. The overall performance of the AI system was promising according to cancer detection. © RSNA, 2022.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Female , Humans , Mammography/methods , Mass Screening/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...