Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 25: 382-391, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35573048

ABSTRACT

We developed a novel lentiviral vector, pseudotyped with the F and HN proteins from Sendai virus (rSIV.F/HN), that produces long-lasting, high-efficiency transduction of the respiratory epithelium. Here we addressed whether this platform technology can secrete sufficient levels of a therapeutic protein into the lungs to ameliorate a fatal pulmonary disease as an example of its translational capability. Pulmonary alveolar proteinosis (PAP) results from alveolar granulocyte-macrophage colony-stimulating factor (GM-CSF) insufficiency, resulting in abnormal surfactant homeostasis and consequent ventilatory problems. Lungs of GM-CSF knockout mice were transduced with a single dose of rSIV.F/HN-expressing murine GM-CSF (mGM-CSF; 1e5-92e7 transduction units [TU]/mouse); mGM-CSF expression was dose related and persisted for at least 11 months. PAP disease biomarkers were rapidly and persistently corrected, but we noted a narrow toxicity/efficacy window. rSIV.F/HN may be a useful platform technology to deliver therapeutic proteins for lung diseases requiring long-lasting and stable expression of secreted proteins.

2.
J Physiol ; 596(14): 2901-2916, 2018 07.
Article in English | MEDLINE | ID: mdl-29797443

ABSTRACT

KEY POINTS: Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. ABSTRACT: Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca2+ accumulation, and a slowing in sarcoplasmic reticulum Ca2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function.


Subject(s)
Muscle Contraction , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Sarcoplasmic Reticulum/pathology , Smoking/adverse effects , Animals , Capillaries , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , Muscular Diseases/etiology , Sarcoplasmic Reticulum/metabolism
4.
PLoS One ; 11(10): e0164951, 2016.
Article in English | MEDLINE | ID: mdl-27792730

ABSTRACT

BACKGROUND: Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. METHODS: Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. RESULTS: Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. CONCLUSIONS: A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised.


Subject(s)
Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Animals , Chronic Disease , DNA/analysis , Disease Models, Animal , Female , Immobilization/adverse effects , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/physiology , Muscle Strength/physiology , Muscle, Skeletal/chemistry , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/physiopathology , Proteolysis , Real-Time Polymerase Chain Reaction , Time Factors , Troponin I/analysis
5.
Expert Rev Respir Med ; 10(6): 685-97, 2016 06.
Article in English | MEDLINE | ID: mdl-27175979

ABSTRACT

Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/microbiology , Cystic Fibrosis/therapy , Pseudomonas Infections/drug therapy , Pseudomonas Infections/physiopathology , Pseudomonas aeruginosa , Chronic Disease , Humans , Pseudomonas Infections/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...