Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Med ; 7: 103, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26449484

ABSTRACT

BACKGROUND: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles. METHODS: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121-133) and an additional dataset in subcutaneous and visceral fat (n = 149). RESULTS: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts. CONCLUSIONS: Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.


Subject(s)
DNA Methylation , Obesity/genetics , Adipose Tissue/metabolism , Adolescent , Adult , Aged , Alleles , Brain/metabolism , CpG Islands , Enhancer Elements, Genetic , Female , Fibroblasts/metabolism , Humans , Male , Middle Aged , Obesity/blood , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Young Adult
2.
Psychiatry Res ; 224(3): 246-53, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25456522

ABSTRACT

The role of rumination at the beginning of eating disorder (ED) is not well understood. We hypothesised that impulsivity, rumination and restriction could be associated with neural activity in response to food stimuli in young individuals with eating disorders (ED). We measured neural responses with functional magnetic resonance imaging (fMRI), tested working memory (WM) and administered the eating disorders examination questionnaire (EDE-Q), Barratt impulsivity scale (BIS-11) and obsessive-compulsive inventory (OCI-R) in 15 adolescent females with eating disorder not otherwise specified (EDNOS) (mean age 15 years) and 20 age-matched healthy control females. We found that EDNOS subjects had significantly higher scores on the BIS 11, EDE-Q and OCI-R scales. Significantly increased neural responses to food images in the EDNOS group were observed in the prefrontal circuitry. OCI-R scores in the EDNOS group also significantly correlated with activity in the prefrontal circuitry and the cerebellum. Significantly slower WM responses negatively correlated with bilateral superior frontal gyrus activity in the EDNOS group. We conclude that ruminations, linked to WM, are present in adolescent females newly diagnosed with EDNOS. These may be risk factors for the development of an eating disorder and may be detectable before disease onset.


Subject(s)
Cerebral Cortex/physiopathology , Feeding and Eating Disorders/physiopathology , Impulsive Behavior/physiology , Memory, Short-Term/physiology , Prefrontal Cortex/physiopathology , Adolescent , Female , Humans , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder/physiopathology
3.
G3 (Bethesda) ; 3(8): 1325-34, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23733888

ABSTRACT

In Drosophila melanogaster, two chromosome-specific targeting and regulatory systems have been described. The male-specific lethal (MSL) complex supports dosage compensation by stimulating gene expression from the male X-chromosome, and the protein Painting of fourth (POF) specifically targets and stimulates expression from the heterochromatic 4(th) chromosome. The targeting sites of both systems are well characterized, but the principles underlying the targeting mechanisms have remained elusive. Here we present an original observation, namely that POF specifically targets two loci on the X-chromosome, PoX1 and PoX2 (POF-on-X). PoX1 and PoX2 are located close to the roX1 and roX2 genes, which encode noncoding RNAs important for the correct targeting and spreading of the MSL-complex. We also found that the targeting of POF to PoX1 and PoX2 is largely dependent on roX expression and identified a high-affinity target region that ectopically recruits POF. The results presented support a model linking the MSL-complex to POF and dosage compensation to regulation of heterochromatin.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Chromosomes/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Biological Evolution , Dosage Compensation, Genetic , Drosophila Proteins/metabolism , Female , Gene Expression , Genetic Loci , Heterochromatin/genetics , Heterochromatin/metabolism , Male , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription Factors/metabolism , X Chromosome
4.
Nucleic Acids Res ; 41(8): 4481-94, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23476027

ABSTRACT

Heterochromatin protein 1a (HP1a) is a chromatin-associated protein important for the formation and maintenance of heterochromatin. In Drosophila, the two histone methyltransferases SETDB1 and Su(var)3-9 mediate H3K9 methylation marks that initiates the establishment and spreading of HP1a-enriched chromatin. Although HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4-specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggest that HP1a, SETDB1 and Su(var)3-9 repress genes on chromosome 4, where non-ubiquitously expressed genes are preferentially targeted, and stimulate genes in pericentromeric regions. Further, we showed that on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In addition, we found that transposons are repressed by HP1a and Su(var)3-9 and that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation , Repressor Proteins/metabolism , Animals , Centromere , Chromobox Protein Homolog 5 , Chromosomes, Insect , DNA Transposable Elements , Drosophila melanogaster/metabolism , Genome, Insect , Histone-Lysine N-Methyltransferase , Transcriptional Activation
5.
Psychoneuroendocrinology ; 38(9): 1668-74, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23428257

ABSTRACT

Acute sleep loss increases food intake in adults. However, little is known about the influence of acute sleep loss on portion size choice, and whether this depends on both hunger state and the type of food (snack or meal item) offered to an individual. The aim of the current study was to compare portion size choice after a night of sleep and a period of nocturnal wakefulness (a condition experienced by night-shift workers, e.g. physicians and nurses). Sixteen men (age: 23 ± 0.9 years, BMI: 23.6 ± 0.6 kg/m(2)) participated in a randomized within-subject design with two conditions, 8-h of sleep and total sleep deprivation (TSD). In the morning following sleep interventions, portion size, comprising meal and snack items, was measured using a computer-based task, in both fasted and sated state. In addition, hunger as well as plasma levels of ghrelin were measured. In the morning after TSD, subjects had increased plasma ghrelin levels (13%, p=0.04), and chose larger portions (14%, p=0.02), irrespective of the type of food, as compared to the sleep condition. Self-reported hunger was also enhanced (p<0.01). Following breakfast, sleep-deprived subjects chose larger portions of snacks (16%, p=0.02), whereas the selection of meal items did not differ between the sleep interventions (6%, p=0.13). Our results suggest that overeating in the morning after sleep loss is driven by both homeostatic and hedonic factors. Further, they show that portion size choice after sleep loss depend on both an individual's hunger status, and the type of food offered.


Subject(s)
Appetite/physiology , Feeding Behavior/psychology , Food Preferences/psychology , Hunger/physiology , Portion Size/psychology , Sleep Deprivation/psychology , Acute Disease , Adult , Fasting/blood , Fasting/physiology , Fasting/psychology , Food Preferences/physiology , Ghrelin/blood , Homeostasis , Humans , Male , Meals , Pleasure , Polysomnography , Self Report , Sleep Deprivation/physiopathology , Snacks , Wakefulness/physiology , Young Adult
6.
Dev Biol ; 373(2): 453-63, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23195220

ABSTRACT

Lysine methylation of histones is associated with both transcriptionally active chromatin and with silent chromatin, depending on what residue is modified. Histone methyltransferases and demethylases ensure that histone methylations are dynamic and can vary depending on cell cycle- or developmental stage. KDM4A demethylates H3K36me3, a modification enriched in the 3' end of active genes. The genomic targets and the role of KDM4 proteins in development remain largely unknown. We therefore generated KDM4A mutant Drosophila, and identified 99 mis-regulated genes in first instar larvae. Around half of these genes were down-regulated and the other half up-regulated in dKDM4A mutants. Although heterochromatin protein 1a (HP1a) can stimulate dKDM4A demethylase activity in vitro, we find that they antagonize each other in control of dKDM4A-regulated genes. Appropriate expression levels for some dKDM4A-regulated genes rely on the demethylase activity of dKDM4A, whereas others do not. Surprisingly, although highly expressed, many demethylase-dependent and independent genes are devoid of H3K36me3 in wild-type as well as in dKDM4A mutant larvae, suggesting that some of the most strongly affected genes in dKDM4A mutant animals are not regulated by H3K36 methylation. By contrast, dKDM4A over-expression results in a global decrease in H3K36me3 levels and male lethality, which might be caused by impaired dosage compensation. Our results show that a modest increase in global H3K36me3 levels is compatible with viability, fertility, and the expression of most genes, whereas decreased H3K36me3 levels are detrimental in males.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Histone Demethylases/metabolism , Lysine/metabolism , Alleles , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Male , Methylation
7.
Nucleic Acids Res ; 40(13): 5926-37, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22434883

ABSTRACT

Variation in the number of individual chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy) is associated with developmental abnormalities and reduced fitness in all species examined; it is the leading cause of miscarriages and mental retardation and a hallmark of cancer. However, despite their documented importance in disease, the effects of aneuploidies on the transcriptome remain largely unknown. We have examined the expression effects of seven heterozygous chromosomal deficiencies, both singly and in all pairwise combinations, in Drosophila melanogaster. The results show that genes in one copy are buffered, i.e. expressed more strongly than the expected 50% of wild-type level, the buffering is general and not influenced by other monosomic regions. Furthermore, long genes are significantly more highly buffered than short genes and gene length appears to be the primary determinant of the buffering degree. For short genes the degree of buffering depends on expression level and expression pattern. Furthermore, the results show that in deficiency heterozygotes the expression of genes involved in proteolysis is enhanced and negatively correlates with the degree of buffering. Thus, enhanced proteolysis appears to be a general response to aneuploidy.


Subject(s)
Drosophila melanogaster/genetics , Monosomy , Proteolysis , Aneuploidy , Animals , Drosophila melanogaster/metabolism , Gene Deletion , Gene Expression , Genes, Insect
8.
PLoS Genet ; 5(5): e1000465, 2009 May.
Article in English | MEDLINE | ID: mdl-19412336

ABSTRACT

Chromosomal instability, which involves the deletion and duplication of chromosomes or chromosome parts, is a common feature of cancers, and deficiency screens are commonly used to detect genes involved in various biological pathways. However, despite their importance, the effects of deficiencies, duplications, and chromosome losses on the regulation of whole chromosomes and large chromosome domains are largely unknown. Therefore, to explore these effects, we examined expression patterns of genes in several Drosophila deficiency hemizygotes and a duplication hemizygote using microarrays. The results indicate that genes expressed in deficiency hemizygotes are significantly buffered, and that the buffering effect is general rather than being mainly mediated by feedback regulation of individual genes. In addition, differentially expressed genes in haploid condition appear to be generally more strongly buffered than ubiquitously expressed genes in haploid condition, but, among genes present in triploid condition, ubiquitously expressed genes are generally more strongly buffered than differentially expressed genes. Furthermore, we show that the 4th chromosome is compensated in response to dose differences. Our results suggest general mechanisms have evolved that stimulate or repress gene expression of aneuploid regions as appropriate, and on the 4th chromosome of Drosophila this compensation is mediated by Painting of Fourth (POF).


Subject(s)
Aneuploidy , Chromosomes/genetics , Drosophila melanogaster/genetics , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Gene Dosage , Gene Expression , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...